引言
近些年的目标跟踪算法都在往做大做强的方向发展,比如更深的网络和更复杂的模块。尽管性能越刷越高,但是却很少考虑效率问题,以至于几乎无法在边缘设备上实时运行部署,实用性较低,因此研究轻量化的目标跟踪算法是非常必要的(另外一个原因也可能是做大做强上能水论文的点越来越不好找了 / 狗头保命)。本篇博客总结了三篇最近研究跟踪模型轻量化的工作。
- LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search
- Efficient Visual Tracking with Exemplar Transformers
- FEAR: Fast, Efficient, Accurate and Robust Visual Tracker
LightTrack
详细解读:【极市直播】严彬:CVPR 2021-LightTrack:基于网络结构搜索的超轻量级跟踪模型设计
LightTrack 使用神经架构搜索(NAS)来设计更轻量级和高效的目标追踪器。实验表明,LightTrack 与手工设计的 SOTA 跟踪器(如 SiamRPN++ 和 Ocean)相比,可以实现更优越的性能,而需要的计算量和参数要少得多。此外,当部署在资源受限的移动芯片上时,也能以更快的速度运行。
LightTrack 采用 one-shot NAS 的方法搜索结构,流程如图 2 所示。整个过程训练与搜索是解耦的,首先训练超网(随机采样路径进行训练),然后用进化算法从超网中寻找最优子结构。
最后搜索到的 LightTrack-Mobile 结构如图 3 所示,具有如下特点:
- backbone 中有将近一半使用 7×7 的卷积核大小,可能是因为这样能在较浅的 backbone 中尽量提升感受野;
- 搜索架构选择了倒数第二个 block 作为特征输出,可能是因为跟踪网络并不倾向太高级的语义特征;
- 分类分支需要的网络层数比回归分支