分巧克力

儿童节那天有 K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。小明一共有 N块巧克力,其中第i块是HixWi的方格组成的长方形。为了公平起见,小明需要从这 N块巧克力中切出 K块巧克力分给小朋友们。切出的巧克力需要满足
1.形状是正方形,边长是整数。
2.大小相同。
例如一块6x5 的巧克力可以切出 6块2x2 的巧克力或者 2块 3x3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?


输入
第一行包含两个整数 和 。(1<N,K<10^5)
以下 行每行包含两个整数 和 1<Hi,W_i<10^5)。
输入保证每位小朋友至少能获得一块1x1的巧克力。

输出
输出切出的正方形巧克力最大可能的边长。

#include<bits/stdc++.h>
using namespace std;
int n,k,l,r,mid,cnt,ans;
struct st{
	int a,b;
}a[100005];
int main(){
	cin>>n>>k;
	for(int i=1;i<=n;i++){
		cin>>a[i].a>>a[i].b;
		r=max(max(a[i].a,a[i].b),r);
	}
	while(l<r){
		mid=l+r>>1,cnt=0;
		for(int i=1;i<=n;i++){
			cnt+=(a[i].a/mid)*(a[i].b/mid);
		}
		if(cnt>=k)l=mid+1,ans=mid;else r=mid;
//		cout<<mid<<' '<<cnt<<endl;
	}
	cout<<ans;
	return 0;
}

### Java 实现巧克力算法 为了实现巧克力问题,在给定条件下合理巧克力使得满足特定条件下的最大或最小化目标,可以采用二分查找方法来优化解决方案。通过设定合理的边界并不断调整中间值来进行逼近最优解。 #### 定义问题模型 假设存在 `m` 块不同大小的巧克力条,每块由长度表示 `[a1, a2,...am]` 。现在要将这些巧克力平均成若干份,每个人获得相同数量的小块巧克力,问最多能切成多大尺寸而不违反每人至少得到一定量的要求? 对于此类最大化最小值或者最小化最大值的问题,通常可以通过二分答案的方式求解: - 设定可能的最大切割宽度范围为 `(0,max{ai})` - 使用二分法逐步缩小这个区间直到找到最接近但不超过限定人数所需的总片数为止 具体到代码层面,则涉及到如何判断当前猜测的结果是否可行以及更新上下限逻辑[^1]。 ```java public class ChocolateDistribution { public static int maxPieces(int[] chocolates, int k) { long low = 1; long high = Arrays.stream(chocolates).max().getAsInt(); while (low <= high) { long mid = low + (high - low) / 2; if (isFeasible(chocolates, mid, k)) { low = mid + 1; } else { high = mid - 1; } } return (int) high; } private static boolean isFeasible(int[] chocoSizes, long pieceSize, int peopleCount) { int count = 0; for (var size : chocoSizes) { count += size / pieceSize; } return count >= peopleCount; } } ``` 此段程序实现了基于二分搜索策略解决巧克力问题的方法。其中 `maxPieces()` 函数负责执行主要的二分过程;而辅助函数 `isFeasible()` 则用于验证以某个指定单位割后的总数能否达到预期的人数需求[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值