Numpy库中常用random函数

本文介绍了Numpy库中用于生成随机数的三个函数:rand用于生成[0,1]区间内的均匀分布数据,randn则生成均值为0、方差为1的正态分布数据,而randint则用于生成指定范围内的整数。通过实例展示了它们的使用方法及其输出结果。
摘要由CSDN通过智能技术生成

Numpy中rand和randn的区别


前言

在机器学习中,经常需要用到数据的生成或者初始值生成,记录一下常用的random函数

Rand

rand生成的是给定大小规模且数值在[0,1]均匀分布的数据

import numpy as np
x = np.random.rand(2,3)  #生成2x3规模,数值在0到1内均匀分布的数据
print(x)
"""
输出结果
[[0.61676118 0.71549656 0.4532574 ]
 [0.47669184 0.83506049 0.72650041]]
"""

Randn

Randn生成的是给定大小规模,数值为均值为0,方差为1的正态分布数据

import numpy as np
x = np.random.randn(2,3) #生成规模为2x3,数值符合均值为0,方差为1的正态分布
print(x)
"""
输出结果
[[-0.19240552  0.18855736  1.26459091]
 [ 1.62561705 -0.1683153  -0.50238646]]
"""

Randint

Randint生成是给定范围内具体数目的数据

import numpy as np
x = np.random.randint(0,10,10) #生成0-9的10个数据
print(x)
"""
输出结果
[9 2 3 3 5 7 0 9 4 5]
"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lzzzzzzm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值