高等数学考试内容包括:函数与极限、一元函数微分学、一元函数积分学、多元函数微积分学、常微分方程等。
第一章 函数
如果时至今日你仍然记着【反对幂指三】的含义,那恭喜你,完全可以跳过前面的章节,直接开始多元函数微积分学的学习了,或者是用复习这个词更准确。
高等数学将基本初等函数归为五类:幂函数、指数函数、对数函数、三角函数、反三角函数 。
反三角函数
反正弦函数:y = arcsin x 反余弦函数:y = arccos x反正切函数:y = arctan x 反余切函数:y = arccot x
反正割函数:y = arcsec x 反余割函数:y = arccsc x
对数函数
y=
(a>0, a≠1, x>0,特别当α=e时,记为y=ln x)
幂函数
y=
( α为常数,且可以是自然数、有理数,也可以是任意实数或复数。)
指数函数
y=
(a>0, a≠1)
三角函数
正弦函数 :y =sinx 余弦函数 :y =cos x
正切函数 :y =tan x 余切函数 :y =cot x
正割函数 :y =sec x 余割函数 :y =csc x
这些基础知识,即便是初高中时期如数家珍,而今,对于工作数年,不问世事的你来说,却宛如天堑一般,那些知识早已经丢掉了,要接受现实。下面笔者通过一个飞卢小说中的情节,唤起你埋藏在大脑深处的对三角函数的记忆——小宋穿越回古代成为皇帝,为了找寻其他老乡,在皇宫外竖起一个皇榜,上书五个大字:奇变偶不变, 有能答出下句者,赏银三千两。
1、函数
函数三要素(定义域、值域、对应法则),高中知识,
需要加深五大初等函数的认识(每天用笔在纸上写一写),包括复合函数、分段函数等的初等函数组合。
2、数列
数列:设f是定义于N上的一个函数,其函数值按…的顺序排列成一个序列:
,
,
,…,
,…
就成为数列,简单地记作{}
数列拥有函数的三要素(定义域、值域、对应法则),可以理解为函数取定义域为正整数的值的集合。如果函数图像是一个半圆,那么它所对应的数列的图像就是N边型,当自变量的间隔越小,N就越大,二者面积越接近,当自变量间隔为1时就构成了数列。