军队文职(数学2+物理)——高等数学 1、函数

本文概述了高等数学的基础知识,包括函数的类型如幂函数、指数函数、对数函数、三角函数及反三角函数,并强调了函数的性质如奇偶性、周期性和单调性。同时,介绍了数列的概念,作为函数在特定定义域(正整数)上的应用。内容适合于需要重温数学基础知识的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       高等数学考试内容包括:函数与极限、一元函数微分学、一元函数积分学、多元函数微积分学、常微分方程等。

第一章 函数

       如果时至今日你仍然记着【反对幂指三】的含义,那恭喜你,完全可以跳过前面的章节,直接开始多元函数微积分学的学习了,或者是用复习这个词更准确。

高等数学将基本初等函数归为五类:幂函数、指数函数、对数函数、三角函数、反三角函数  。

反三角函数
反正弦函数:y = arcsin x   反余弦函数:y = arccos x   

反正切函数:y = arctan x   反余切函数:y = arccot x   

反正割函数:y = arcsec x   反余割函数:y = arccsc x

对数函数

 y=\log a X(a>0, a≠1, x>0,特别当α=e时,记为y=ln x)

幂函数

y=x^{a}( α为常数,且可以是自然数、有理数,也可以是任意实数或复数。)

指数函数

y=a^x(a>0, a≠1)

三角函数

正弦函数 :y =sinx    余弦函数 :y =cos x     

正切函数 :y =tan x   余切函数 :y =cot x 

正割函数 :y =sec x  余割函数 :y =csc x

        这些基础知识,即便是初高中时期如数家珍,而今,对于工作数年,不问世事的你来说,却宛如天堑一般,那些知识早已经丢掉了,要接受现实。下面笔者通过一个飞卢小说中的情节,唤起你埋藏在大脑深处的对三角函数的记忆——小宋穿越回古代成为皇帝,为了找寻其他老乡,在皇宫外竖起一个皇榜,上书五个大字:奇变偶不变, 有能答出下句者,赏银三千两。

1、函数

     函数三要素(定义域、值域、对应法则),高中知识,
     需要加深五大初等函数的认识(每天用笔在纸上写一写),包括复合函数、分段函数等的初等函数组合。

     

函数的性质(“任意”:∀;“存在”:∃;D为定义域 )
有界性:x \epsilon D ,若存在正数 M ,都有  \left | f (x) \right |  \leq M 成立,则称 f ( x)在区间 D 上有界。
              举例 D为全体实数时 f(x)=sinx , f(x)=cosx
奇偶性:设f(x)的定义域关于原点对称,若f(x)=-f(x),则称f(x)为奇函数  举例 f(x)=sinx (x   \epsilon [-\pi,\pi])
               若f(x)=f(-x),则称f(x)为偶函数   举例 f(x)=cosx(x   \epsilon [-\pi,\pi])
周期性 存在常数 T>0,使得∀ x \epsilon D x+T \epsilon D ,都有 f ( x + T) = f ( x) ,则称 f ( x)是周期函数。
              根据定义,周期函数的定义域是无穷的,举例 f(x)=cosx(x   \epsilonZ)
单调性
x1 , x2   \epsilon D x1<x2,都有 f(x1)< f(x2) ,则称 f (x) D 上单调递增。
x1 , x2   \epsilon D x1<x2,都有 f(x1)> f(x2) ,则称在 f ( x ) D 上单调递减。

2、数列

数列:设f是定义于N上的一个函数,其函数值按…的顺序排列成一个序列:

,…,,…

                就成为数列,简单地记作{x_{n}

数列拥有函数的三要素(定义域、值域、对应法则),可以理解为函数取定义域为正整数的值的集合。如果函数图像是一个半圆,那么它所对应的数列的图像就是N边型,当自变量的间隔越小,N就越大,二者面积越接近,当自变量间隔为1时就构成了数列。

对于想要申请军队文职职位的人来说,获得同意报考证明是个重要的环节。通常来说,这个证明需要从现工作单位获取,表明该单位同意员工参加军队文职人员的招聘考试。 虽然具体的模板可能因不同的单位而异,但般会包括以下几个要素: - 被证明人的基本信息:姓名、身份证号码等。 - 工作信息:所在部门、职务名称、入职时间等。 - 同意语句:明确表示同意此人报名参加军队文职人员公开招考。 - 单位盖章:需加盖人事部门或者公司公章以确认文件的真实性。 - 发证日期:即此份同意书出具的具体日期。 由于具体的要求可能会有所变化,建议直接联系目标应聘单位的人事部门询问最新的规定格式要求。此外,在线可以找到些通用版本的模版供参考,但是请注意确保下载来源的安全性合法性。 为了帮助准备此类文档,下面给出个简单的示例文本结构: --- [单位抬头] 关于XXX同志参加军队文职人员公开招聘考试的同意函 兹有本单位职工XXX(性别X,身份证号XXXX),系我单位XX部/室的名正式工作人员,现任XX职位。经研究决定,同意其参加20XX年度军队面向社会公开招考文职人员统考试。 特此证明。 [单位名称] [单位地址] [联系电话] [单位印章] [开具日期] --- 请记得根据实际情况调整以上内容,并向相关部门咨询是否满足特定需求。同时提醒注意个人信息安全,不要随意在网上分享个人敏感据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值