军队文职(数学2+物理)——高等数学 5、导数

1、导数定义

       设y=f(x)在x_0的某邻域内有定义,自变量增量为Δx,因变量增量\Delta y=f(x+\Delta x)-f(x),若\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}存在,则说明f(x)在x_0处可导,记作{f}'(x)

2、定义公式

1){f}'(x)=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}或者{f}'(x)=\lim_{\Delta x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}

2)左导数:{f}'_{-}(x)=\lim_{\Delta x\rightarrow x_0^-}\frac{f(x)-f(x_0)}{x-x_0}

   右导数:{f}'_{+}(x)=\lim_{\Delta x\rightarrow x_0^+}\frac{f(x)-f(x_0)}{x-x_0}

3)倒数存在的充要条件:

{f}'_{-}(x)={f}'_{+}(x) ,即左右导数存在且相等,常见于分段函数。

例1:y=|x|在x=0处是否可导?

y=\left\{\begin{matrix} -x & x\leqslant 0\\ x& x>0 \end{matrix}\right.

解:{f}'_{-}(x)=-1,{f}'_{+}(x)=1,不可导。

 例2:已知{f}'(x_0)=2,则\lim_{h\rightarrow 0}\frac{f(x_0-2h)-f(x_0)}{h}=?

根据定义公式{f}'(x)=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x},设\Delta x=-2h,可得{f}'(x_0)=\lim_{h\rightarrow 0}\frac{f(x_0-2h)-f(x_0)}{-2h}=2,

推出:

\lim_{h\rightarrow 0}\frac{f(x_0-2h)-f(x_0)}{h}=-2{f}'(x_0)=-4

3、复合函数求导公式

1)导数四则运算

{m*f(x)}'=m{f}'(x)

{[f(x)\pm g(x)]}'={f}'(x)\pm {g}'(x)

{[f(x)\cdot g(x)]}'={f}'(x)*g(x)+f(x)*{g}'(x)

{[\frac{f(x)}{g(x)}]}'=\frac{​{f}'(x)g(x)-f(x){g}'(x)}{g^2(x)},(g(x)\neq 0)

 2)常用的求导公式

{(x^u)}'=ux^{u-1} , 如{(5x^3)}'=5*3x^2=15x^2

推广:u=1时=》{x}'=1\cdot x^0=1,u=0=》{5}'={(5x^0)}'=5*0*x^-1=0

{(a^x)}'=a^xlna ,如{(2^x)}'=2^xln2

推广:a=e时=》{(e^x)}'=e^xlne=e^x

{(log_ax)}'=\frac{1}{xlna}

推广:a=e时=》{(lnx)}'=\frac{1}{xlne}=\frac{1}{x}

{(sinx)}'=cosx           {(cosx)}'=-sinx   

   {(tanx)}'=sec^2x          {(cotx)}'=-csc^2x

   {(secx)}'=secxtanx    {(cscx)}'=-cscxcotx

{(arcsinx)}'=\frac{1}{\sqrt{1-x^2}} 

    {(arccosx)}'=-\frac{1}{\sqrt{1-x^2}}

    {(arctanx)}'=\frac{1}{1+x^2}

    {(arccotx)}'=-\frac{1}{1+x^2}

3)复合函数求导的链式法则

y=f(u),u=\varphi (x),\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}   ,    \frac{dy}{dx}=\frac{dy}{du} / \frac{dx}{du}

4、隐函数求导

       对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。

例1:由方程xy=e^{x+y}+x^2确定y是x的函数,求\frac{dy}{dx}

解:两边同时求导可得{(xy)}'={(e^{x+y}+x^2)}'

\Rightarrow y+x{y}'=e^{x+y}(1+{y}')+2x

\Rightarrow {y}'=\frac{2x-y+e^{x+y}}{x-e^{x+y}}

例2:设y=x^{sinx},求{y}'.

取对数求导法。

{y}'={(x^{sinx})}'={(e^{lnx^{sinx}})}'={(e^{sinxlnx})}'

    =e^{sinxlnx}\cdot (cosxlnx+\frac{sinx}{x})

    =x^{sinx} (cosxlnx+\frac{sinx}{x})

例3:设y=\frac{\sqrt{x+2}(3-x)^4}{(2x+1)^3},求{y}'

两边同时取对数lny=ln\frac{\sqrt{x+2}(3-x)^4}{(2x+1)^3}=ln\sqrt{x+2}+ln(3-x)^4-ln(2x+1)^3

                                                                     =\frac{1}{2}ln(x+2)+4ln(3-x)-3ln(2x+1)

两边同时求导({lny})'={(ln\sqrt{x+2})}'+{(ln(3-x)^4)}'-{(ln(2x+1)^3)}'

                             \Rightarrow \frac{​{y}'}{y}=\frac{1}{2x+2}-\frac{4}{3-x}-\frac{6}{2x+1}

做题过程中发现f(x)变成了y就可能遇到了隐函数求导,主要考察复合函数求导的链式法则和取对数求导法

6、导数的几何应用

(x_0,y_0)点的切线方程:y-y_0={f}'(x_0)(x-x_0)

(x_0,y_0)点的法线方程:y-y_0=\frac{1}{​{f}'(x_0)}(x-x_0),{f}'(x)\neq 0

{f}'(x)=0,切线方程y=y_0,法线方程x=x_0

例:求曲线\left\{\begin{matrix} x=ln(1+t)\\y=t^3+t^2 \end{matrix}\right.在t=1处的切线方程

解:将t=1带入,得x_0=ln2,y_0=2

\frac{dy}{dx}=\frac{dy}{dt} / \frac{dx}{dt}=10

\Rightarrow y-2=10(x-ln2)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值