军队文职(数学2+物理)——线性代数 1、线性方程组

       线性代数考试内容包括线性方程组、矩阵、行列式、向量空间、矩阵的相似化简、二次型等。类似概率论与数理统计,线性代数与个人的算法水平息息相关,是数据结构与算法的基础。

来看某网的一道程序员笔试题:写程序求1,5,3,9,7的逆序数。

答:行列式->逆序数->归并排序。事实证明,算法题就是数学题,这类题考来考取实质上是考察你对线性代数是否有了解。

因此,这个系列会打乱大纲中的顺序,通过代码题的形式讲解各个知识点。

————————————————————————————————————

编程问题1:写程序求如下方程组的解

\left\{\begin{matrix} x_{1}+2x_{2}+x_{3}=7\\ 2x_{1}-x_{2}+3x_{3}=7\\ 3x_{1}+x_{2}+2x_{3}=18 \end{matrix}\right.

这属于求解n个方程n个未知数的(nxn)线性方程组的问题。

线性方程:也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。

如:3x_{1}+2x_{2}=5             x_{1}+x_{2}-x_{3}=9

反例:x_{1}+\sqrt{x_{2}}=5             x_{1}x_{2}=6         

线性方程组:是由一个或多个包含相同变量x_{1},x_{2},x_{3},...x_{n}的线性方程组成。

齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。

 如:齐次方程组\left\{\begin{matrix} 3x_{1}+2x_{2}=0\\ 5x_{1}-3x_{2}=0 \end{matrix}\right.

    非齐次方程组 \left\{\begin{matrix} 3x_{1}+2x_{2}=5\\ 5x_{1}-3x_{2}=6 \end{matrix}\right.

线性方程组的解

        线性方程组的解有下列三种情况:

       1、无解              \left\{\begin{matrix} x_{1}+x_{2}=1\\ x_{1}+x_{2}=2 \end{matrix}\right.          在直角坐标系中二者平行

       2、有唯一解       \left\{\begin{matrix} x_{1}+x_{2}=1\\ x_{1}-x_{2}=2 \end{matrix}\right.          在直角坐标系中二者相交于点(1.5,-0.5)

       3、有无穷对个解  \left\{\begin{matrix} x_{1}+x_{2}=1\\ 2x_{1}+2x_{2}=2 \end{matrix}\right.    在直角坐标系中二者重合

对于nxn线性方程组,我们可以通过消元法求解,这是初中时期数学中学到的专门用于解决二元一次方程组的方法。

但针对上面的第三种情况\left\{\begin{matrix} x_{1}+x_{2}=1\\ 2x_{1}+2x_{2}=2 \end{matrix}\right.,这个方程组其实只有一个方程,但是它却完全符合n个方程n个未知数的线性方程组的形式,解决这类问题必须考虑到这种情况。

高斯消元法:数学上,高斯消元法是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。

高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组。所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解。高斯消元法可以用在电脑中来解决数千条等式及未知数。 

问题总结:

输入:\begin{pmatrix} 1 & 2& 1\\ 2& -1& 3\\ 3& 1& 2 \end{pmatrix}、 \begin{pmatrix} 7\\ 7 \\18 \end{pmatrix}

算法:高斯消元法,

输出:x_{1}x_{2}...x_{n}  。

高斯消元法的定义可知,高斯消元法需要掌握矩阵、增广矩阵、行阶梯阵相关的知识

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值