线性代数考试内容包括线性方程组、矩阵、行列式、向量空间、矩阵的相似化简、二次型等。类似概率论与数理统计,线性代数与个人的算法水平息息相关,是数据结构与算法的基础。
来看某网的一道程序员笔试题:写程序求1,5,3,9,7的逆序数。
答:行列式->逆序数->归并排序。事实证明,算法题就是数学题,这类题考来考取实质上是考察你对线性代数是否有了解。
因此,这个系列会打乱大纲中的顺序,通过代码题的形式讲解各个知识点。
————————————————————————————————————
编程问题1:写程序求如下方程组的解
这属于求解n个方程n个未知数的(nxn)线性方程组的问题。
线性方程:也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。
如:
反例:
线性方程组:是由一个或多个包含相同变量的线性方程组成。
齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。
如:齐次方程组
非齐次方程组
线性方程组的解
线性方程组的解有下列三种情况:
1、无解 在直角坐标系中二者平行
2、有唯一解 在直角坐标系中二者相交于点(1.5,-0.5)
3、有无穷对个解 在直角坐标系中二者重合
对于nxn线性方程组,我们可以通过消元法求解,这是初中时期数学中学到的专门用于解决二元一次方程组的方法。
但针对上面的第三种情况,这个方程组其实只有一个方程,但是它却完全符合n个方程n个未知数的线性方程组的形式,解决这类问题必须考虑到这种情况。
高斯消元法:数学上,高斯消元法是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。
高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组。所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解。高斯消元法可以用在电脑中来解决数千条等式及未知数。
问题总结:
输入:、 ,
算法:高斯消元法,
输出:、... 。
由高斯消元法的定义可知,高斯消元法需要掌握矩阵、增广矩阵、行阶梯阵相关的知识