军队文职(数学2+物理)——高等数学 3、求极限(一)

一、直接带入法:

根据极限的四则运算法则,若已知\lim\ f(x)= A\lim\ g(x)= B

那么可以通过直接代入法求极限。

\lim\left [ \ f(x)\pm g(x) \right ]= A\pm B

\lim\left [ \ f(x)\cdot g(x) \right ]= A\cdot B

\lim\frac{f(x)}{g(x)}= \frac{A}{B}\left ( B\neq 0 \right )

例:\lim_{x \to \0}\frac{2x^{2}-3x+2}{3x^{2}+2}

解: 由公式\lim\frac{f(x)}{g(x)}= \frac{A}{B}\left ( B\neq 0 \right ),直接将x=0带入,A=2,B=2\neq 0,\frac{A}{B}=1

二、分母为0,有理化多项式,消去分母

例:\lim_{x \to \1}\frac{x-1}{\sqrt{x+3}-2}=\lim_{x \to \1}\frac{(x-1)(\sqrt{x+3}+2)}{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}

                                  =\lim_{x \to \1}\frac{(x-1)(\sqrt{x+3}+2)}{(x-1)}

                                  =\sqrt{x+3}+2= 4

分母为0,不满足四则运算法则,通过有理化多项式,消去分母

                            

三、等价无穷小公式

1、无穷大量

x\rightarrow x 0 ( x\rightarrow \infty ) \left | f(x) \right |\rightarrow +\infty ,则称 f ( x ) x \rightarrowx0 (x\rightarrow \infty)时的无穷大量。
无穷大量是一个变量,它

2、无穷小量

x \rightarrowx0 (x\rightarrow \infty)f (x) \rightarrow0 ,则称 f (x)为   x \rightarrowx0 (x\rightarrow \infty)时的无穷小。即以0为极限的量就是无穷小量。

无穷小的性质:

1)有界量乘以无穷小仍是无穷小

2)有限个无穷小的和差积仍是无穷小

3)恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。

无穷小的比较:

若f(x),g(x)为同一变化过程下的无穷小,且

\lim_{x \to \Delta }\frac{f(x)}{g(x)}=k

if(k=0) => f(x)是g(x)的高阶无穷小;

if(k=1) => f(x)是g(x)的等价无穷小;

if(k≠0&&k≠1) => f(x)是g(x)的同阶无穷小;

常用的等价无穷小公式:

x ~ sinx ~ tanx ~ arcsinx ~ arctanx ~ ln(1+x) ~ e^{x}-1

1-cos^{a}x \sim \frac{a}{2}x^2

(1+x)^a-1 \sim ax

等价无穷小的使用条件:

1、被代换的量,在取极限的时候极限值为0;

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

题目中,一般将自变量和自变量的参数当做一个整体,通过换元法代入公式求解。

例:\lim_{x \to \0}\frac{(1+2x)^3}{x}=2\lim_{x \to \0}\frac{(1+2x)^3-1}{2x}=2\lim_{m \to \0}\frac{3m}{m}=6

无穷小的性质以及等价无穷小在多元函数微积分学中同样会用到。

四、两个重要极限公式(常见题型)

        求极限设计最广泛的题目是三角函数与指数函数,为了方便作题,总结了两个重要的极限公式,他们可以由无穷小公式或者洛必达法则推导出来。

1、\lim_{x \to \0}\frac{sinx}{x}=1

推导过程:通过等价无穷小公式

例:\lim_{x \to \0}\frac{sin2x}{x}=\lim_{x \to \0}\frac{sin2x}{2x}\cdot 2

      再由四则运算法则\lim\left [ \ f(x)\cdot g(x) \right ]= A\cdot B可得,  \lim_{x \to \0}\frac{sin2x}{x}=\lim_{x \to \0}\frac{sin2x}{2x}\cdot 2=2

2、\lim_{x \to \infty }\(1+\frac{1}{x})^{x}=\lim_{x \to \0 }\(1+x)^{\frac{1}{x}}=1

公式推导:指数函数求极限通常会通过求对数,将自变量下移

\lim_{x \to \infty }\(1+\frac{1}{x})^{x}=\lim_{x \to \infty }e^{\ln(1+\frac{1}{x})^{x} }=\lim_{x \to \infty }e^{x\ln(1+\frac{1}{x}) }

=e^{\lim_{x \to \infty }{x\ln(1+\frac{1}{x}) }},再由等价无穷小公式x\sim ln(1+x)可得

=e^1=e

例:\lim_{x \to \infty }\(1+\frac{2}{x})^{x}=\lim_{x \to \infty }\(1+\frac{2}{x})^{\frac{x}{2}\cdot 2}=e^{2}           

五、夹逼准则和单调有界原理

小概率下有机会遇见如下陷阱题:     

1、数列项相加陷阱 

例:\lim_{n \to \infty }(\frac{1}{n^2+1}+\frac{2}{n^2+2}+...+\frac{n}{n^2+n})

注意此题数列项中n并非数组下标,一开始就等于无穷,设数列下标为q,则本题中的数列项为\frac{q}{n^2+q}|_{q(1,2,3...) },要区分于\frac{q}{n^2+n}|_{q(1,2,3...) }\frac{q}{q^2+q}|_{q(1,2,3...) }

当数列项为\frac{q}{q^2+q}|_{q(1,2,3...) },题目会 变成\lim_{n \to \infty }(\frac{1}{1^2+1}+\frac{2}{2^2+2}+...+\frac{n}{n^2+n}),根据极限四则运算法则,结果是\infty,没有极限,根本不可能这么出题的。

夹逼准则:\existsN,当n>N,有y_{n}\leq x_{n}\leq z_{n},若\lim_{n \to \infty }y_{n}=\lim_{n \to \infty }z_{n}=a,则\lim_{n \to \infty }x_{n}=a

       上题中由于数列项有n和q两个变量导致我们无法使用四则运算法则,而夹逼准则允许我们通过分情况讨论q,分别构造出q为常量的y_{n}z_{n},再通过极限的四则运算法则求y_{n}z_{n}的极限,从而间接求出x_{n}的极限。

设q=n,y_{n}=\lim_{n \to \infty }(\frac{1}{n^2+n}+\frac{2}{n^2+n}+...+\frac{n}{n^2+n})=\lim_{n \to \infty }(\frac{n(n+1))}{2n(n+1))})=\frac{1}{2}

设q=1,z_{n}=\lim_{n \to \infty }(\frac{1}{n^2+1}+\frac{2}{n^2+1}+...+\frac{n}{n^2+1})=\lim_{n \to \infty }\frac{n^2+n}{2(n^2+1)}

                  =\lim_{n \to \infty }\frac{n^2+1+n-1}{2(n^2+1)}=\lim_{n \to \infty }\(\frac{1}{2}+\sqsubset \sqsupset )=\frac{1}{2}

推出\lim_{n \to \infty }x_{n}=\frac{1}{2}

2、证明极限是否存在,并求极限

单调有界原理:单调有界数列必有极限。
该定理可以证明数列极限是否存在,文职考试全是客观题,遇见的概率很小。

           

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值