军队文职(数学2+物理)——线性代数 2、矩阵

高斯消元法的定义可知,高斯消元法需要掌握矩阵、增广矩阵、行阶梯阵相关的知识

一、矩阵的概念

由m×n个数a_{ij}排成m行n列的数表,记为A=A_{m \times n}=(a_{ij})_{mn}=a_{ij}

\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}

二、特殊矩阵

1)同型矩阵                    A_{m\times n}      B_{m\times n}  

2)n阶矩阵(方阵)     当m=n时,称作n阶矩阵或方阵,记作A_{n},题目中的方程系数组成的矩阵就是3阶方阵    

 A_{3}=\begin{pmatrix} 1 & 2& 1\\ 2& -1& 3\\ 3& 1& 2 \end{pmatrix}

3)行(列)矩阵           当m=1时时,称作行矩阵或行向量,当n=1时时,称作列矩阵或列向量,题目中的方程常数项组成的矩阵就是列向量

\begin{pmatrix} 7\\ 7 \\18 \end{pmatrix}

4)零矩阵                  即所有元素皆为0的矩阵  

5)对角矩阵              对角矩阵是一个主对角线(只有方阵才有对角线)之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。n阶零矩阵(方阵),也属于对角矩阵。

\begin{pmatrix} 1 & & \\ & 2& \\ & & 3 \end{pmatrix}  

对角线上元素相等的对角矩阵称为数量矩阵

\begin{pmatrix} 3 & & \\ & 3& \\ & & 3 \end{pmatrix}

对角线上元素全为1的对角矩阵称为单位矩阵

\begin{pmatrix} 1 & & \\ & 1& \\ & & 1 \end{pmatrix}

6)单位矩阵              是方阵,且从左上角到右下角的对角线(称为主对角线)上的元素均为1,除此以外全都为0 。如:\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \left\{\begin{matrix} x_{1}=\square \\ x_{2}=\square \\ x_{3}=\square \end{matrix}\right.,可见单位矩阵下,方程组的解就是方程的常数。

三、矩阵的运算

1)矩阵的相等     同型矩阵

A=B\Leftrightarrow a_{ij}=b_{ij}

2)加减法            同型矩阵

A\pm B=\begin{pmatrix} a_{11}\pm b_{11}& ... & a_{1n}\pm b_{1n}\\ ...& ...& ...\\ a_{m1}\pm b_{m1}& ... & a_{mn}\pm b_{mn} \end{pmatrix}

\begin{pmatrix} 1 & 1 & 1\\ 1& 1& 1 \end{pmatrix} + \begin{pmatrix} 2 & 2 & 2\\ 2& 2& 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3\\ 3& 3& 3 \end{pmatrix}

3)数乘

\lambda A=A\lambda=\begin{pmatrix} \lambda a_{11}& ... & \lambda a_{1n}\\ ...& ...& ...\\ \lambda a_{m1}& ... & \lambda a_{mn} \end{pmatrix}

\frac{3}{2}\begin{pmatrix} 2 & 2 & 2\\ 2& 2& 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3\\ 3& 3& 3 \end{pmatrix}

4)矩阵的乘法

矩阵对应二维数组或者交错数组,几乎所有相关的算法题都是线性代数中的矩阵题,其中矩阵的乘法和转置是最常见的题目。

设A为m×p的矩阵,B为p×n的矩阵,那么称m×n的矩阵C为矩阵A与B的乘积

A_{m\times p}\cdot B_{p\times n}=C_{m\times n}

记作C=AB,其中矩阵C中的第i行第j列元素可以表示为C_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+...a_{ip}b_{pj}

C_{ij}为A的第i行所有元素与B的第j列所有元素相乘后相加。

A=\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} B=\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}\Rightarrow AB=3

A=\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} B=\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \Rightarrow AB=\begin{pmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{pmatrix}

例题:实现矩阵相乘函数 void matrix_multiply(int* A,int *B,int *C,int m,int p,int n)。

解:C_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+...a_{ip}b_{pj}

5)方阵的幂

A^{k}=A\cdot A...\cdot A    ②A^{k}\cdot A^{l}=A^{k+l}   ③(A^{k})^{l}=A^{kl}

例题:给定一个N阶矩阵A,输出A的M次幂(M是非负整数)

6)转置

设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即: 把m×n矩阵A的行换成同序数的列得到一个n×m矩阵,此矩阵叫做A的转置矩阵,记做或 A^{T}或者A^{'}

A=\begin{pmatrix} 1 & 2 & 3\\ 1& 2& 3 \end{pmatrix}              A^{T}=\begin{pmatrix} 1 & 1\\ 2& 2\\ 3& 3 \end{pmatrix}

例题:给定一个矩阵 A, 返回 A 的转置矩阵。 矩阵的转置是指将矩阵的主对角线翻转,交换矩阵的行索引与列索引。

(A^{T})^{T}=A

(A+B)^{T}=A^{T}+B^{T}

(\lambda A)^T=\lambda A^T

(A_{1}A_{2}...A_{k})^T=(A_{k})^T...(A_{1})^T\Rightarrow   (AB)^T=B^TA^T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值