下载PyTorch框架(win11+Intel(R) Iris(R) Xe Graphics显卡)

本文章基于已经安装好python3.+和pycharm:

第一步:Anaconda下载安装

第二步:修改Anaconda下载源

      以上两步,下载步骤借鉴地址如下:

https://blog.csdn.net/weixin_41717861/article/details/128798766?spm=1001.2014.3001.5502

第三步:安装 Pytorch & torchvision

网上好多都是GPU、CUDA(CUDNN)安装教程,而且还要求是英伟达的显卡(NV),而查询我的电脑显卡为Intel(R) Iris(R) Xe Graphics,所以安装步骤稍微不同。

首先进入pytorch官网:Start Locally | PyTorch,选择相对应的版本,自动生成安装命令,并在cmd中输入。

安装命令:

conda install pytorch torchvision torchaudio cpuonly -c pytorch

3.1 在cmd中输入进行安装

 3.2 测试安装是否成功

出现<module 'torch' from 'D:\\MySoftware\\anaconda3\\lib\\site-packages\\torch\\__init__.py'>

即为安装成功!!!! 

 

Intel(R) Iris(R) Xe Graphics显卡可以用来跑PyTorch的深度学习。但需要注意的是,由于该显卡的性能相对较低,所以在训练大规模的深度学习模型时,可能需要更长的训练时间。以下是在Intel(R) Iris(R) Xe Graphics显卡上跑PyTorch的一些步骤: 1. 安装PyTorch和相关的依赖库。可以使用pip或conda等包管理工具来安装PyTorch和相关依赖库。具体安装方法可以在PyTorch官方网站上找到。 2. 设置环境变量。在使用PyTorch时,需要设置一些环境变量,例如CUDA_VISIBLE_DEVICES等。在Intel(R) Iris(R) Xe Graphics显卡上跑PyTorch时,这些环境变量需要设置为CPU模式,即将CUDA_VISIBLE_DEVICES设置为空。 3. 编写PyTorch代码。可以编写PyTorch代码来定义深度学习模型,加载数据集,进行训练和测试等操作。 4. 运行PyTorch代码。在Intel(R) Iris(R) Xe Graphics显卡上运行PyTorch代码时,可以使用CPU模式来进行计算。可以使用以下代码来将PyTorch模型转换为CPU模式: ``` model.to('cpu') ``` 这样可以将PyTorch模型中的所有参数和计算转换为CPU模式,从而在Intel(R) Iris(R) Xe Graphics显卡上进行计算。 5. 调试和优化。在运行PyTorch代码时,可能会遇到一些性能问题或错误。可以通过调试和优化来解决这些问题,并提高模型的性能。 需要注意的是,Intel(R) Iris(R) Xe Graphics显卡的性能相对较低,因此在训练复杂的深度学习模型时,可能需要更长的训练时间。同时,也需要注意内存的限制,避免因为内存不足而导致程序崩溃。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值