统计|(可/无)重复双因素方差分析一般步骤及分析表

本博文源于《商务统计》中的方差分析,旨在解决讲述一般的双因素方差分析。双因素方差分析是建立在单因素方差分析的基础上。
统计|如何简单理解单因素方差分析

双因素方差分析简要介绍

双因素方差分析目的:分析两个因素对实验结果的影响。
双因素方差分析种类:如果两个因素对实验结果的影响是相互独立的,分别判断单独因素对实验数据的影响,这时叫做无重复双因素方差分析。 如果有联系,那么叫做可重复双因素方差分析。

双因素方差分析基本假定

  • 每个总体都服从正态分布:对于因素的每一个水平,其观察值是来自正态分布总体的简单随机样本。
  • 各个总体的方差必须相同:对于各组观察数据,是从具有相同方差的总体中抽取的。
  • 观察值是独立的

双因素方差分析的数据结构

在这里插入图片描述
在这里插入图片描述

无重复双因素方差分析的一般步骤

提出假设

对行因素提出的假设:
H 0 : μ 1 = μ 2 = . . . = μ i = . . . . = μ k ( μ i 为 第 i 个 水 平 的 均 值 ) H 1 : μ i ( i = 1 , 2 , . . . . , k ) 不 全 相 等 H_0:\mu_1=\mu_2=...=\mu_i=....=\mu_k(\mu_i为第i个水平的均值)\\ H1:\mu_i(i=1,2,....,k)不全相等 H0:μ1=μ2=...=μi=....=μk(μii)H1:μi(i=1,2,....,k)
对列因素提出的假设:
H 0 : μ 1 = μ 2 = . . . = μ j = . . . . = μ r ( μ j 为 第 j 个 水 平 的 均 值 ) H 1 : μ j ( j = 1 , 2 , . . . . , r ) 不 全 相 等 H_0:\mu_1=\mu_2=...=\mu_j=....=\mu_r(\mu_j为第j个水平的均值)\\ H1:\mu_j(j=1,2,....,r)不全相等 H0:μ1=μ2=...=μj=....=μr(μjj)H1:μj(j=1,2,....,r)

计算平方和(SS)

跟单因素方差分析类似,也是需要计算一大堆的平方和:
总 误 差 平 方 和 S S T = ∑ i = 1 k ∑ j = 1 r ( x i j − x ˉ ˉ ) 2 行 因 素 误 差 平 方 和 S S R = ∑ i = 1 k ∑ j = 1 r ( x i ⋅ − x ˉ ˉ ) 2 列 因 素 误 差 平 方 和 S S C = ∑ i = 1 k ∑ j = 1 r ( x ⋅ j − x ˉ ˉ ) 2 随 机 误 差 项 平 方 和 S S E = ∑ i = 1 k ∑ j = 1 r ( x i j − x i ⋅ ˉ − x ⋅ j ˉ + x ˉ ˉ ) 2 总误差平方和 SST=\sum_{i=1}^k\sum_{j=1}^r(x_{ij}-\bar{\bar{x}})^2\\ 行因素误差平方和 SSR=\sum_{i=1}^k\sum_{j=1}^r(x_{i·}-\bar{\bar{x}})^2\\ 列因素误差平方和 SSC=\sum_{i=1}^k\sum_{j=1}^r(x_{·j}-\bar{\bar{x}})^2\\ 随机误差项平方和 SSE=\sum_{i=1}^k\sum_{j=1}^r(x_{ij}-\bar{x_{i·}}-\bar{x_{·j}}+\bar{\bar{x}})^2 SST=i=1kj=1r(xijxˉˉ)2SSR=i=1kj=1r(xixˉˉ)2SSC=i=1kj=1r(xjxˉˉ)2SSE=i=1kj=1r(xijxiˉxjˉ+xˉˉ)2
这里与单因素方差分析一样有一条关系:SST=SSR+SSC+SSE

计算均方(MS)

误差平方和除以相应的自由度
三个平方和的自由度分别是:
总 误 差 平 方 和 的 S S T 的 自 由 度 为 k r − 1 行 因 素 平 方 和 的 S S T 的 自 由 度 为 k − 1 列 因 素 平 方 和 的 S S T 的 自 由 度 为 r − 1 误 差 项 平 方 和 的 S S T 的 自 由 度 为 ( k − 1 ) × ( r − 1 ) 总误差平方和的SST的自由度为kr-1\\ 行因素平方和的SST的自由度为k-1\\ 列因素平方和的SST的自由度为r-1\\ 误差项平方和的SST的自由度为(k-1)\times{(r-1)}\\ SSTkr1SSTk1SSTr1SST(k1)×(r1)
行因素的均方,记为MSR,计算公式为:

M S R = S S R k − 1 MSR=\frac{SSR}{k-1} MSR=k1SSR
列因素的均方,记为MSC,计算公式为:

M S C = S S C r − 1 MSC=\frac{SSC}{r-1} MSC=r1SSC
误差项的均方,记为MSE,计算公式为:

M S E = S S E ( k − 1 ) ( r − 1 ) MSE=\frac{SSE}{(k-1)(r-1)} MSE=(k1)(r1)SSE

计算检验统计量

检验行因素的统计量
F R = M S R M S E ∼ F ( k − 1 , ( k − 1 ) ( r − 1 ) ) F_R=\frac{MSR}{MSE}\sim{F(k-1,(k-1)(r-1))} FR=MSEMSRF(k1,(k1)(r1))
检验列因素的统计量
F C = M S C M S E ∼ F ( r − 1 , ( k − 1 ) ( r − 1 ) ) F_C=\frac{MSC}{MSE}\sim{F(r-1,(k-1)(r-1))} FC=MSEMSCF(r1,(k1)(r1))

双因素方差分析表

在这里插入图片描述

统计决策

将统计量的值F与给定的显著性水平 α \alpha α的临界值 F α F_\alpha Fα进行比较,作出对原假设H_0的决策

  • 根据给定的显著性水平 α \alpha α在F分布表中查找相应的临界值 F α F_\alpha Fα
  • F R > F α F_R\gt{F_\alpha} FR>Fα,拒绝原假设 H 0 H_0 H0,表明均值之间的差异是显著的,即所检验的行因素对观察值有显著影响。
  • F C > F α F_C\gt{F_{\alpha}} FC>Fα,拒绝原假设 H 0 H_0 H0,表明均值之间有显著差异,即所检验的列因素对观察值有显著影响.

可重复双因素方差分析的一般步骤

平方和的计算

x i j l 为 对 应 于 行 因 素 的 第 i 个 水 平 和 列 因 素 的 第 j 个 水 平 的 第 l 行 的 观 察 值 x i ⋅ ˉ 为 行 因 素 的 第 i 个 水 平 的 样 本 均 值 x ⋅ j ˉ 为 列 因 素 的 第 j 个 水 平 的 样 本 均 值 x i j ˉ 对 应 行 因 素 的 第 i 个 水 平 和 列 因 素 的 第 j 个 水 平 的 组 合 的 样 本 均 值 x ˉ ˉ 为 全 部 n 个 观 察 值 的 总 均 值 x_{ijl}为对应于行因素的第i个水平和列因素的第j个水平的\\ 第l行的观察值\\ \bar{x_{i·}}为行因素的第i个水平的样本均值\\ \bar{x_{·j}}为列因素的第j个水平的样本均值\\ \bar{x_{ij}}对应行因素的第i个水平和列因素的第j个水平的\\ 组合的样本均值\\ \bar{\bar{x}}为全部n个观察值的总均值 xijlijlxiˉixjˉjxijˉijxˉˉn

总 平 方 和 S S T = ∑ i = 1 k ∑ j = 1 r ∑ l = 1 m ( x i j l − x ˉ ˉ ) 2 行 变 量 平 方 和 S S R = r m ∑ i = 1 k ( x ˉ i ⋅ − x ˉ ˉ ) 2 列 变 量 平 方 和 S S C = k m ∑ j = 1 r ( x ˉ ⋅ j − x ˉ ˉ ) 2 交 互 用 平 方 和 : S S R C = m ∑ i = 1 k ∑ j = 1 r ( x ˉ i j − x ˉ i ⋅ − x ˉ ⋅ j + x ˉ ˉ ) 2 误 差 项 平 方 和 S S E = S S T − S S R − S S C − S S R C 总平方和 SST=\sum_{i=1}^k\sum_{j=1}^r\sum_{l=1}^m(x_{ijl}-\bar{\bar{x}})^2\\ 行变量平方和 SSR=rm\sum_{i=1}^k(\bar{x}_{i·}-\bar{\bar{x}})^2\\ 列变量平方和 SSC=km\sum_{j=1}^r(\bar{x}_{·j}-\bar{\bar{x}})^2\\ 交互用平方和:SSRC=m\sum_{i=1}^k\sum_{j=1}^r(\bar{x}_{ij}-\bar{x}_{i·}-\bar{x}_{·j}+\bar{\bar{x}})^2\\ 误差项平方和 SSE=SST-SSR-SSC-SSRC SST=i=1kj=1rl=1m(xijlxˉˉ)2SSR=rmi=1k(xˉixˉˉ)2SSC=kmj=1r(xˉjxˉˉ)2:SSRC=mi=1kj=1r(xˉijxˉixˉj+xˉˉ)2SSE=SSTSSRSSCSSRC
这里与单因素方差分析一样有一条关系:SST=SSR+SSC+SSE+SSRC

可重复双因素方差分析表

在这里插入图片描述
一样的可以看临界值F和F理论值大小,也可以看P值

例子:品牌与地区是否影响彩电销售(单因素)

在这里插入图片描述

提出假设

  • 对品牌因素提出的假设为
    H 0 : μ 1 = μ 2 = μ 3 = μ 4 ( 品 牌 对 销 售 量 无 显 著 影 响 ) H 1 : μ i ( i = 1 , 2 , . . . , 4 ) 不 全 相 等 ( 有 显 著 影 响 ) H_0:\mu_1=\mu_2=\mu_3=\mu_4(品牌对销售量无显著影响)\\ H_1:\mu_i(i=1,2,...,4)不全相等(有显著影响) H0:μ1=μ2=μ3=μ4()H1:μi(i=1,2,...,4)()
  • 对地区因素提出的假设为

H 0 : μ 1 = μ 2 = μ 3 = μ 4 = μ 5 ( 地 区 对 销 售 量 无 显 著 影 响 ) H 1 : μ j ( j = 1 , 2 , . . . , 5 ) 不 全 相 等 ( 有 显 著 影 响 ) H_0:\mu_1=\mu_2=\mu_3=\mu_4=\mu_5(地区对销售量无显著影响)\\ H_1:\mu_j(j=1,2,...,5)不全相等(有显著影响) H0:μ1=μ2=μ3=μ4=μ5()H1:μj(j=1,2,...,5)()

检验统计量

通过相应的统计软件进行绘制输出,
在这里插入图片描述

  • 先比较 F 与 F c r i t F与F crit FFcrit的值大小
  • 或者比较P-value跟0.05对比

统计决策

9.46E-05小于0.05说明可以拒绝原假设,即品牌跟销量有显著性差异,0.14367>0.05,不拒绝原假设,即地区对销量没有显著性差异。数学结论如下:
F R = 18.10777 > F α = 3.4903 , 拒 绝 原 假 设 H 0 , 说 明 彩 电 的 品 牌 对 销 售 量 有 显 著 影 响 。 F C = 2.100846 < F α = 3.2592 , 不 拒 绝 原 假 设 H 0 , 无 证 据 表 明 销 售 地 区 对 彩 电 的 销 售 量 有 显 著 影 响 F_R=18.10777\gt{F_\alpha}=3.4903,拒绝原假设H_0,说明彩电的品牌对销售量有显著影响。\\ F_C=2.100846\lt{F_\alpha}=3.2592,不拒绝原假设H_0,无证据表明销售地区对彩电的销售量有显著影响 FR=18.10777>Fα=3.4903,H0,FC=2.100846<Fα=3.2592,H0,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值