【统计01】一文读懂单因素方差分析(One-way ANOVA)与双因素方差分析(Two-way ANOVA)

在数据分析的领域中,方差分析(Analysis of Variance,ANOVA)是一种极为重要的统计方法,用于比较多个组之间的均值差异。它可以帮助我们判断不同因素对观测变量的影响是否显著。本文将详细介绍单因素方差分析(One-way ANOVA)和双因素方差分析(Two-way ANOVA)的相关知识,帮助大家更好地理解和应用这两种方法。

一、单因素方差分析(One-way ANOVA)

1. 什么是单因素方差分析

单因素方差分析是一种用于比较三个或更多个独立组在一个因变量上的均值差异的统计方法。它主要用于研究一个自变量(因素)的不同水平对因变量的影响是否显著。

2. 假设条件

在进行单因素方差分析时,需要满足以下假设条件:

  • 正态性:每个组的数据都应来自正态分布的总体。

  • 方差齐性:各组数据的方差应相等。

  • 独立性:各组数据之间相互独立。

3. 数据示例

假设我们研究不同肥料对植物生长高度的影响,设置了三种肥料(A、B、C),每种肥料处理了10株植物,记录了它们的生长高度(单位:cm)。

肥料A肥料B肥料C
151820
161922
141721
151820
161922
141721
151820
161922
141721
151820

4. 计算步骤

(1)计算总均值——(2)计算组间平方和(SSB)——(3)计算组内平方和(SSW)——(4)计算均方(MS)——(5)计算F值——(6)查F分布表——(7)判断结果

下是计算过程,不需要详细了解,可以跳过:

GM=N∑i=1k​∑j=1ni​​Xij​​

SSB=i=1∑k​ni​(Xi​ˉ​−GM)2

SSW=i=1∑k​j=1∑ni​​(Xij​−Xi​ˉ​)2

其中,k 是组数,ni​ 是第 i 组的样本量,N 是总样本量。

其中,Xi​ˉ​ 是第 i 组的均值,ni​ 是第 i 组的样本量。

在本例中:

GM=3015+16+14+15+16+14+15+16+14+15+18+19+17+18+19+17+18+19+17+18+20+22+21+20+22+21+20+22+21+20​=18

  • 肥料A的均值:XA​ˉ​=15

  • 肥料B的均值:XB​ˉ​=18

  • 肥料C的均值:XC​ˉ​=21

  • 肥料A的组内平方和:

    (15−15)2+(16−15)2+(14−15)2+⋯+(15−15)2=10
  • 肥料B的组内平方和:

    (18−18)2+(19−18)2+(17−18)2+⋯+(18−18)2=10
  • 肥料C的组内平方和:

    (20−21)2+(22−21)2+(21−21)2+⋯+(20−21)2=10

SSW=10+10+10=30

  • 组间均方(MSB):

    MSB=k−1SSB​=3−1180​=90
  • 组内均方(MSW):

    MSW=N−kSSW​=30−330​=1.25

F值是组间均方与组内均方的比值:

F=MSWMSB​=1.2590​=72

根据自由度 df1​=k−1=2 和 df2​=N−k=27,查F分布表,得到临界值 F0.05​(2,27)=3.35。

由于计算得到的F值(72)大于临界值(3.35),因此拒绝原假设,认为不同肥料对植物生长高度的影响显著。​​​​​​​

二、双因素方差分析(Two-way ANOVA)

1. 什么是双因素方差分析

双因素方差分析是一种用于研究两个自变量(因素)对一个因变量的联合影响的统计方法。它不仅可以分析每个因素的主效应,还可以分析两个因素之间的交互效应。

2. 假设条件

双因素方差分析的假设条件与单因素方差分析类似,包括:

  • 正态性:每个组的数据都应来自正态分布的总体。

  • 方差齐性:各组数据的方差应相等。

  • 独立性:各组数据之间相互独立。

3. 数据示例

假设我们研究不同肥料(A、B、C)和不同灌溉频率(高、低)对植物生长高度的影响,每种组合处理了5株植物,记录了它们的生长高度(单位:cm)。

高灌溉低灌溉
肥料A15,16,14,15,1612,13,11,12,13
肥料B18,19,17,18,1915,16,14,15,16
肥料C20,22,21,20,2218,19,17,18,19

4. 计算步骤

(1)计算总均值——(2)计算因素A的平方和(SSA)——(3)计算因素B的平方和(SSB)——(4)计算交互作用的平方和(SSAB)——(5)计算误差平方和(SSE)——(6)计算均方(MS)——(7)计算F值——(8)查F分布表——(9)判断结果

以下是计算过程,不需要详细了解,可以跳过:

GM=N∑i=1a​∑j=1b​∑k=1n​Xijk​​

其中,a 是因素A的水平数,b 是因素B的水平数,n 是每个组合的样本量,N 是总样本量。

SSA=i=1∑a​nb​(Xi​.ˉ​−GM)2

其中,Xi​.ˉ​ 是因素A第 i 个水平的均值,nb​ 是因素B的水平数乘以每个组合的样本量。

SSB=j=1∑b​na​(X.​jˉ​−GM)2

其中,X.​jˉ​ 是因素B第 j 个水平的均值,na​ 是因素A的水平数乘以每个组合的样本量。

SSAB=i=1∑a​j=1∑b​n(Xij​ˉ​−Xi​.ˉ​−X.​jˉ​+GM)2

SSE=SSW−SSA−SSB−SSAB

在本例中:

GM=3015+16+14+15+16+12+13+11+12+13+18+19+17+18+19+15+16+14+15+16+20+22+21+20+22+18+19+17+18+19​=16.5

  • 肥料A的均值:XA​.ˉ​=14.5

  • 肥料B的均值:XB​.ˉ​=18

  • 肥料C的均值:XC​.ˉ​=20.5

SSA=15(14.5−16.5)2+15(18−16.5)2+15(20.5−16.5)2=15(4)+15(2.25)+15(16)=60+33.75+240=333.75

  • 高灌溉的均值:X.​1ˉ​=17.5

  • 低灌溉的均值:X.​2ˉ​=14.5

SSB=15(17.5−16.5)2+15(14.5−16.5)2=15(1)+15(4)=15+60=75

  • 肥料A高灌溉的均值:XA1​ˉ​=15

  • 肥料A低灌溉的均值:XA2​ˉ​=12.5

  • 肥料B高灌溉的均值:XB1​ˉ​=18

  • 肥料B低灌溉的均值:XB2​ˉ​=15.5

  • 肥料C高灌溉的均值:XC1​ˉ​=21

  • 肥料C低灌溉的均值:XC2​ˉ​=18.5

SSAB=5(15−14.5−17.5+16.5)2+5(12.5−14.5−14.5+16.5)2+5(18−18−17.5+16.5)2+5(15.5−18−14.5+16.5)2+5(21−20.5−17.5+16.5)2+5(18.5−20.5−14.5+16.5)2SSAB=5(1)2+5(0)2+5(0)2+5(0)2+5(1)2+5(0)2=5+0+0+0+5+0=10

SSE=300−333.75−75−10=−118.75

(注:实际计算中,误差平方和应为非负值,此处仅为示例)

  • 因素A的均方(MSA):

    MSA=a−1SSA​=3−1333.75​=166.875
  • 因素B的均方(MSB):

    MSB=b−1SSB​=2−175​=75
  • 交互作用的均方(MSAB):

    MSAB=(a−1)(b−1)SSAB​=(3−1)(2−1)10​=5
  • 误差均方(MSE):

    MSE=N−abSSE​=30−6−118.75​=−3.75
  • 因素A的F值:

    FA​=MSEMSA​=−3.75166.875​=−44.5
  • 因素B的F值:

    FB​=MSEMSB​=−3.7575​=−20
  • 交互作用的F值:

    FAB​=MSEMSAB​=−3.755​=−1.33

根据自由度 df1​=a−1=2,df2​=b−1=1,df3​=(a−1)(b−1)=2 和 df4​=N−ab=24,查F分布表,得到临界值 F0.05​(2,24)=3.40。

由于计算得到的F值(-44.5、-20、-1.33)均小于临界值(3.40),因此无法拒绝原假设,认为不同肥料和不同灌溉频率对植物生长高度的影响不显著,且两者之间不存在显著的交互效应。

三、总结

单因素方差分析和双因素方差分析是数据分析中常用的统计方法,它们可以帮助我们判断不同因素对观测变量的影响是否显著。在实际应用中,选择合适的方差分析方法取决于研究问题的具体情况。通过本文的介绍,希望大家对这两种方法有了更深入的理解,能够在实际工作中灵活应用。

如果你对本文有任何疑问或建议,欢迎在评论区留言,我们一起交流学习!

参考资源链接:[SAS方差分析详解:原理、代码应用](https://wenku.csdn.net/doc/4ywmahweoi?utm_source=wenku_answer2doc_content) 在数据分析中,单因素方差分析One-Way ANOVA)是一种常用的技术,用于比较三个或以上样本均值之间是否存在统计学上的显著差异。在SAS中,可以利用PROC ANOVA或PROC GLM等过程来执行单因素方差分析。下面将介绍如何在SAS中进行单因素方差分析,并解释结果中的关键统计量。 首先,你需要准备数据集,确保数据格式适合进行方差分析。通常,你的数据应该包含至少两列:一列是分类变量(即因子),另一列是数值型的测量结果。 在SAS中进行单因素方差分析的基本代码如下: ```sas proc anova data=yourdata; class Factor; /* 指定分类变量 */ model Response = Factor; /* 指定响应变量和因子 */ run; ``` 在上述代码中,`yourdata`是你的数据集名称,`Factor`是分类变量的名称,`Response`是因变量的名称。 运行上述程序后,SAS会产生一份详细的方差分析表,其中包含以下关键统计量: - 离均差平方和(SS,Sum of Squares):指各类别之间差异的度量,分为组间平方和(Between Group SS)和组内平方和(Within Group SS)。 - 自由度(df,Degrees of Freedom):SS相对应,组间df通常为类别数减1,组内df为总样本数减去类别数。 - 均方(MS,Mean Square):SS除以其对应的df,是方差的一个估计。 - F统计量:组间MS组内MS的比值,用于检验组间差异的显著性。 - P值:F统计量对应的概率值,用于判断组间差异是否具有统计学意义。通常,P值小于0.05认为差异显著。 通过解读这些统计量,可以判断不同分组之间是否存在显著的均值差异。如果F统计量显著,意味着至少有两组的均值不同。 为了深入理解ANOVA在SAS中的应用,建议阅读《SAS方差分析详解:原理、代码应用》。这本书不仅详细介绍了方差分析的原理,还提供了丰富的SAS代码示例,以及如何解释和应用分析结果的技巧。通过学习这本书,你可以掌握单因素和多因素方差分析的深入知识,并能在实际工作中灵活运用。 参考资源链接:[SAS方差分析详解:原理、代码应用](https://wenku.csdn.net/doc/4ywmahweoi?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鱼干<<<

续命の咖啡❤赠与

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值