本博文源于作者参加2023考研
1、全程规划
1.1 课程体系(四轮进阶)
- 教材基础(21年9月-22年3月)
- 考点精讲(22年4月-22年7月)
- 真题实战(22年8月-22年10月)(13年真题)
- 冲刺点题(22年11月-22年12月)
1.1.1 教材基础(21年9月-22年3月)
全面复习 打好基础
- 基本概念 —定义
- 基本理论 —定理 性质
- 基本方法—法则
(要求:了解、会用)
1.1.2 复习资料
- 大学资料 (做题:例题、章末习题)
- 复习宝典 核心基础 刘金峰 (做题:宝典习题)
- 高等数学复习全书(基础篇) 吴忠祥 (做题:数学历年真题全精解析(基础篇),660)
1.1.3 考点精讲(22年4月-22年7月)
把握整体 形成体系
总结归纳 主要内容 常考题型
方法 重点 难点
- 基本概念 ----定义
- 基本理论 —定理 、性质
- 基本方法—法则
(要求:理解、掌握)
1.1.4 复习资料
- 高等数学辅导讲义 (做题:辅导讲义 严选题)
- 考研数学复习宝典 (做题:宝典习题)
- 高等数学复习全书(综合篇) (做题:330题)
1.1.5 真题实战(22年8月-22年10月)
实战演练 查漏补缺
1.1.6 复习资料
- 考研数学真题金解 专题:十七堂课
1.1.7 冲刺点题(22年11月-22年12月)
实战演练 查漏补缺
1.1.6 复习资料
- 冲刺班讲义
- 冲刺班点题卷
- 数学决胜冲刺6套卷
- 历年真题套卷
专题:选填题
老师的所有课:基础篇、强化篇 、专项十七躺课 、选填题
2、学习方法指导
2.1 关于基本概念的复习
- 会叙述(数学表达)
- 理解内含(数学意义、作用、几何意义等)
- 相关概念之间的关系(必要条件、充分条件、充要条件、既非充分又非必要条件)
- 掌握应用
2.1.1 举例:导数
导数定义
f
′
(
x
0
)
=
lim
Δ
→
0
Δ
y
Δ
x
=
=
lim
Δ
→
0
f
(
x
0
+
Δ
x
−
f
(
x
0
)
)
Δ
x
=
lim
Δ
→
0
=
f
(
x
)
−
f
(
x
0
)
x
−
x
0
f'(x_0)=\lim\limits_{\Delta{\rightarrow{0}}}\frac{\Delta{y}}{\Delta{x}=}=\lim\limits_{\Delta{\rightarrow{0}}}\frac{f(x_0+\Delta{x}-f(x_0))}{\Delta{x}}=\lim\limits_{\Delta{\rightarrow{0}}}=\frac{f(x)-f(x_0)}{x-x_0}
f′(x0)=Δ→0limΔx=Δy=Δ→0limΔxf(x0+Δx−f(x0))=Δ→0lim=x−x0f(x)−f(x0)
导数的数学意义:变化率
导数相关概念之间的关系:可微、可导、连续
导数的应用
- 利用导数定义求极限
- 利用导数定义求导数
- 利用导数定义判断函数的可导性
关于1的例题:
已
知
f
(
x
)
在
x
=
0
处
可
导
,
且
f
(
0
)
=
0
,
则
lim
Δ
→
0
x
2
f
(
x
)
−
2
f
(
x
3
)
x
3
=
已知f(x)在x=0处可导,且f(0)=0,则\lim\limits_{\Delta{\rightarrow{0}}}\frac{x^2f(x)-2f(x^3)}{x^3}=
已知f(x)在x=0处可导,且f(0)=0,则Δ→0limx3x2f(x)−2f(x3)=
A.-2f’(0)
B-f’(0)
C f’(0)
D 0
关于2的例题
设
函
数
f
(
x
)
=
(
e
x
−
1
)
(
e
2
x
−
2
)
.
.
.
(
e
n
x
−
n
)
,
求
f
′
(
0
)
设函数f(x)=(e^x-1)(e^{2x}-2)...(e^{nx}-n),求f'(0)
设函数f(x)=(ex−1)(e2x−2)...(enx−n),求f′(0)
关于3的例题
下
列
函
数
中
,
在
x
=
0
处
不
可
导
的
是
(
)
下列函数中,在x=0处不可导的是()
下列函数中,在x=0处不可导的是()
A
.
f
(
x
)
=
∣
x
∣
sin
x
B
.
f
(
x
)
=
∣
x
∣
sin
x
C
.
f
(
x
)
=
c
o
s
∣
x
∣
D
f
(
x
)
=
cos
∣
x
∣
A.f(x)=|x|\sin{x} \ \ B.f(x)=|x|\sin{\sqrt{x}} \ \ C .f(x)=cos|x| D\ f(x)=\cos{\sqrt{|x|}}
A.f(x)=∣x∣sinx B.f(x)=∣x∣sinx C.f(x)=cos∣x∣D f(x)=cos∣x∣
2.2 关于基本理论(定理、性质)的复习
- 会叙述(数学表达)
- 理解内含(数学意义、作用),了解外延
- 凡大纲要求掌握或理解的定理 ,性质不但要会用,而且要会证明,凡大纲要求会用的定理、性质要会用。
2.2.1 拉格朗日定理
如果函数f(x)满足
(1)在[a,b]上连续
(2)在(a,b)内可导
那么至少存在一点
ξ
∈
(
a
,
b
)
,
使
得
f
(
b
)
−
f
(
a
)
b
−
a
=
f
′
(
ξ
)
\xi\in{(a,b)},使得\frac{f(b)-f(a)}{b-a}=f'(\xi)
ξ∈(a,b),使得b−af(b)−f(a)=f′(ξ)
拉格朗日的作用:
整体和局部
函数和导函数的关系
证明:
∣
arctan
b
−
arctan
a
∣
≤
∣
b
−
a
∣
|\arctan{b}-\arctan{a}|\le{|b-a|}
∣arctanb−arctana∣≤∣b−a∣
证明:
lim
x
→
∞
[
sin
x
+
1
−
sin
x
]
\lim\limits_{x{\rightarrow{\infty}}}[\sin{\sqrt{x+1}}-\sin{\sqrt{x}}]
x→∞lim[sinx+1−sinx]
求极限:
lim
x
→
∞
x
2
[
a
r
c
t
a
n
x
+
1
−
a
r
c
t
a
n
x
]
\lim\limits_{x{\rightarrow{\infty}}}x^2[arctan{x+1}-arctan{x}]
x→∞limx2[arctanx+1−arctanx]
证明:设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)证明在(a,b)内至少存在一点
ξ
\xi
ξ,使得f’(
ξ
\xi
ξ)>0
证明:设f(x)在[a,b]上二阶可导,f(a)=f(b)=0,且存在
c
∈
(
a
,
b
)
,
使
得
f
(
c
)
<
0
,
∃
ξ
,
η
∈
(
a
,
b
)
,
f
′
(
ξ
)
<
0
,
f
′
′
(
η
)
>
0
c\in(a,b),使得f(c)<0,\exists{\xi,{\eta}\in{(a,b)}},f'(\xi)<0,f''(\eta)>0
c∈(a,b),使得f(c)<0,∃ξ,η∈(a,b),f′(ξ)<0,f′′(η)>0
2.3 关于基本方法(法则)的练习
- 条件
- 结论(公式
- 如何用(什么情况下用,怎么用,使用条件)
2.3.1 洛必达法则
求极限:
lim
x
→
0
x
−
sin
x
x
3
\lim\limits_{x{\rightarrow{0}}}\frac{x-\sin{x}}{x^3}
x→0limx3x−sinx
求极限:
lim
x
→
0
e
x
x
2
\lim\limits_{x{\rightarrow{0}}}\frac{e^x}{x^2}
x→0limx2ex
求极限
lim
x
→
0
x
2
sin
1
x
x
\lim\limits_{x{\rightarrow{0}}}\frac{x^2\sin{\frac{1}{x}}}{x}
x→0limxx2sinx1
3、考研学生的问题
3.1 数学一天复习多少小时可以?
基础和强化:2小时
冲刺时间:4小时1
3.2 基础不好怎么办?
先看零基础课,再看基础班
3.3 基础阶段怎么算完美结束?
87-08真题能够做70%的
3.4 学数学容易忘怎么办?
需要理解
3.5 如何检验自己学的好不好?
做题,会做题就行。
3.6 计算总出错?
1、不会算错
2、 粗心算错
3.7 寒假干嘛?
抓紧复习
3.8 如何针对错题复习?
知道为什么错?多练两遍
3.9 数学基础好怎么复习
87-08 数学真题 ,660 70%要做好
每一章概念、理论多想想 概念本质要点,定理条件结论是什么?
4.李永乐篇
4.1、基础阶段
内容:课本、习题
要求:概念、定理、公式
题目:计算题
参考书:660,基础篇
时间:最后五月底之前完成
4.2、强化阶段
内容:考研常见的题型、方法、技巧
要求:学会 “”““””
参考书题目:讲义、全书、330
时间:5月-9月
听课
4.3、巩固、提高
内容:真题
要求:正确、熟练、举一反三
参考书:6套 330、临阵磨枪
时间:10月-12月