pytorch transform数据处理,代码和图片示例

PyTorch学习笔记(二)图像数据增强
1.8 仿射变换和线性变换

RandomAffine 类,对图像进行放射变换

放射变换是二维的线性变换,由旋转、平移、缩放、错切、翻转五种基本变换构成

from PIL import Image
from torchvision.transforms import RandomAffine

image = Image.open('Lenna.jpg')
random_affine = RandomAffine(
    degrees=45,  # 旋转的角度,同 RandomRotation 中的 degrees 设置
    translate=(0.5, 0.5),  # 平移区间设置,传入 (a, b) ,a 设置宽,b 设置高,
                           # 图像在宽的维度平移的区间为 -img.width * a < dx < img_width * a
    scale=None,  # 缩放比例
    shear=None,  # 设置错切角度,有水平错切和垂直错切,若为 a,则仅在 x 轴错切,错切角度在 (-a, a);
                 # 若为 (a, b),则 a 设置 x 轴角度,b 设置 y 轴角度;
                 # 若为 (a, b, c, d),则 x 轴角度为 (a, b),y 轴角度为 (c, d)
    resample=False,  # PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC
    fillcolor=0  # 设置填充颜色
)
# RandomAffine 中并没有翻转相关的设置

random_affine(image).show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值