预处理之仿射变换
预处理之仿射变换
预处理之仿射变换
补充:transform.invert 预处理逆操作
from PIL import Image
from torchvision import transforms
import torch
import numpy as np
def transform_invert(img_, transform_train):
"""
将data 进行反transfrom操作
:param img_: tensor
:param transform_train: torchvision.transforms
:return: PIL image
"""
if 'Normalize' in str(transform_train):
norm_transform = list(filter(lambda x: isinstance(x, transforms.Normalize), transform_train.transforms))
mean = torch.tensor(norm_transform[0].mean, dtype=img_.dtype, device=img_.device)
std = torch.tensor(norm_transform[0].std, dtype=img_.dtype, device=img_.device)
img_.mul_(std[:, None, None]).add_(mean[:, None, None])
img_ = img_.transpose(0, 2).transpose(0, 1)
if 'ToTensor' in str(transform_train):
img_ = np.array(img_) * 255
if img_.shape[2] == 3:
img_ = Image.fromarray(img_.astype('uint8')).convert('RGB')
elif img_.shape[2] == 1:
img_ = Image.fromarray(img_.astype('uint8').squeeze())
else:
raise Exception("Invalid img shape, expected 1 or 3 in axis 2, but got {}!".format(img_.shape[2]))
return img_
if __name__ == '__main__':
img = Image.open(r"./test.jpg").convert('RGB')
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
print(img_tensor)
print(img_tensor.shape)
img = transform_invert(img_tensor, img_transform)
img.show()

一 放射变换:RandomAffine
功能:对图像进行仿射变换,仿射变换是二维的线性变换,由五种基本原子变换构成,分别是旋转、平移、缩放、错切和翻转
主要参数说明:
- degrees:旋转角度设置
- translate:平移区间设置,如(a, b), a设置宽(width) ,b设置高(height)
图像在宽维度平移的区间为-img_width * a < dx < img_width *a
- scale:缩放比例(以面积为单位)(范围:0-1)
- fill_color: 填充颜色设置
- shear:错切角度设置,有水平错切和垂直错切
若为a,则仅在x轴错切,错切角度在(-a, a)之间
若为(a, b), 则a设置x轴角度,b设置y的角度
若为(a,b, c, d),则a, b设置x轴角度,c, d设置y轴角度 - resample:重采样方式,有NEAREST BILINEAR、 BICUBIC
1.旋转
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.RandomAffine(degrees=60), # 仿射变换
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()

2.平移
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.RandomAffine(degrees=0,translate=(0.2,0.2),fillcolor=(0,0,255)), # 仿射变换
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()
translate=(0.2:宽的平移范围,0.2:高的平移范围)

3.缩放
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.RandomAffine(degrees=0,scale=(0.2,1),fillcolor=(0,0,255)), # 仿射变换
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()

4.错切
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.RandomAffine(degrees=0,shear=(0,0,0,55),fillcolor=(0,0,255)), # 仿射变换
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()
