耦合协调度指标如何分析?

一、应用

    耦合协调度模型用于分析事物的协调发展水平。耦合度指两个或两个以上系统之间的相互作用影响,实现协调发展的动态关联关系,可以反映系统之间的相互依赖相互制约程度。协调度指耦合相互作用关系中良性耦合程度的大小,它可体现出协调状况的好坏。

    比如国家经济发展与社会民生的耦合关系情况,也或者城市化与生态环境交互耦合关系情况,也或者科技创新与产业结构耦合关系情况,质量与数量的耦合可持续发展问题等。

二、操作

SPSSAU操作

(1)点击SPSSAU综合评价里面的‘耦合协调度’按钮。如下图

(2)拖拽数据后点击开始分析

   SPSSAU耦合协调度默认选择了‘数据区间化’,其意义在于将数据压缩在[0.01,0.99]之间。此处理在于将数据压缩在0~1之间。可将‘数据区间化’复选框打勾去掉再次分析。

   区间化:a+(b - a) * (X - Min)/(Max - Min),其中b为0.99,a为0.01,Max和Min分别表示某项对应的最大值和最小值。

三、案例背景

    当前有计算出某城市2011~2016共6年的经济效益和社会效益数据。希望通过耦合协调度模型计算出城市发展的耦合协调程度,以及城市发展的耦合协调等级水平。数据如下:

数据来源于:舒小林[1,2,3] 高应蓓[2] 张元霞[2] 杨春宇[2,3]. (2015). 旅游产业与生态文明城市耦合关系及协调发展研究. 中国人口资源与环境(25), 90.

四、分析结果

SPSSAU生成的分析结果如下:

(1)耦合度C值

n=2    

              2 \times\left[\frac{U_{1} \cdot U_{2}}{\left(U_{1}+U_{2}\right)^{2}}\right]^{\frac{1}{2}}

n=3   

              3 \times\left[\frac{U_{1} \cdot U_{2} \cdot U_{3}}{\left(U_{1}+U_{2}+U_{3}\right)^{3}}\right]^{\frac{1}{3}}

n=4    

              4 \times\left[\frac{U_{1} \cdot U_{2} \cdot U_{3} \cdot U_{4}}{\left(U_{1}+U_{2}+U_{3}+U_{4}\right)^{4}}\right]^{\frac{1}{4}}

n>4        

              n \times\left[\frac{U_{1} U_{2} \cdots U_{n}}{\left(U_{1}+U_{2}+\cdots+U_{n}\right)^{n}}\right]^{\frac{1}{n}}

(参考出处文献:丛晓男. 耦合度模型的形式、性质及在地理学中的若干误用[J]. 经济地理, 2019(4).)。

(2)协调指数T值

          T = β1U1 + β2U2 + β3U3 + ..,其中β1,β2,β3等代表权重,该值由专业知识而定,默认情况下,SPSSAU认为所有分析项的权重一致。如果想自己设置,可通过“指标权重”进行设置。

(3) 耦合协调度D值

           D= Sqrt(C*T), Sqrt是开根号的意思。

五、总结

    本次针对某市2011~2016共6年的经济效益和社会效益数据进行耦合协调度分析(上表格中第1项~第6项,事实上就是2011~2016年的意思)。上表格可以看到,随着年份的变化(从2011~2016),耦合协调程度逐渐变好,从轻度失调到优质协调。

   具体耦合协调度D值用于耦合协调等级及划分标准如下表格:

### 计算和分析SPSS中不同指标间的耦合协调 #### 定义与概念 耦合协调用于衡量多个评价对象之间的发展水平是否同步以及相互关系的紧密程。通过构建耦合模型可以定量描述两个或更多系统之间的协同效应。 #### 数据准备 为了在 SPSS 中实现这一目标,首先需要确保数据集已经过适当预处理并导入到软件环境中。这通常涉及清理缺失值、异常检测和其他必要的转换操作[^1]。 #### 构建综合指数 对于每一个子系统的各个维(即不同的评估标准),应当先采用合适的方法来合成单一数值表示该领域内的整体表现情况。这里推荐使用主成分分析(PCA),它能够有效地提取原始变量中的主要信息,并减少冗余特征的影响。具体过程可参照相关文献说明[^2]。 #### 应用极差标准化方法 当完成上述步骤之后,则需进一步对所得分量实施无量纲化处理——即将其映射至特定区间内以便于后续比较。一种常见做法便是运用极差变换公式: \[ X'=\frac{X-\min(X)}{\max(X)-\min(X)} \] 其中 \(X'\) 表示经过规范化后的得分;而\(X\) 则代表未经调整前的实际观测值。值得注意的是,在某些情况下可能还需要考虑反向指标的情形,此时应相应修改计算逻辑以适应实际情况的需求。 #### 耦合度函数设定 定义一个合理的耦合度方程是至关重要的一步。一般而言,可以选择如下形式表达两者间的关系强: \[ C=\sqrt{T_{1}T_{2}}/(T_{1}+T_{2}) \] 这里的 \(C\) 即为我们所求解的目标参数;同时设 \(T_1, T_2,\ldots,T_n\) 分别对应各参与主体经由前述环节得出的结果序列。显然,随着这些项取值增大,最终得到的整体关联性也会随之增强。 #### 解释结果意义 最后阶段在于解读输出图表及统计数据背后蕴含的信息价值。如果发现某一对象与其他成员相比存在明显偏离趋势的话,那么很可能意味着其间存在着较为严重的失衡现象亟待解决。反之亦然,高一致性的分布模式往往暗示着良好的协作状态得以维持下去的可能性较大。 ```spss * 假定已有一个名为 'data.sav' 的文件包含了所有必需字段 *. GET FILE='path_to_your_file/data.sav'. DATASET NAME DataSet1 WINDOW=FRONT. * 执行 PCA 并保存因子分数作为新列 . FACTOR VARIABLES=v1 v2 ... vn /CRITERIA=EIGENVALUE(1)/SAVE REGRESSION SCORES . * 对选定的关键因素应用极差标准化 * COMPUTE standardized_v1=(v1-min(v1))/(max(v1)-min(v1)). EXECUTE. * 使用自定义公式创建耦合系数变量 * COMPUTE coupling_degree=sqrt(T1*T2)/(T1+T2). EXECUTE. ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值