科研小白别死磕AMOS了,一篇文章教你轻松搞定结构方程模型,SEM不达标调整建议

在学术研究和数据分析领域,结构方程模型(SEM)凭借其强大的处理能力,一直是探索变量间复杂关系的重要工具。然而,传统SEM软件如AMOS等,操作复杂,使用门槛较高,让不少初学者望而却步。今天为大家介绍无需编程基础,使用SPSSAU软件简单几步就能完成SEM分析,让你轻松驾驭复杂模型!

一、SEM结构方程模型

1SEM基本概念

结构方程模型(SEM)主要用于分析及研究潜变量之间的关系,由于潜变量不能直接观测,在问卷中常用一系列量表题进行测量,因此结构方程模型由两个模型构成,即测量模型和结构模型。

  • 测量模型:即验证性因子分析,用于测量概念、评价结构效度并考察测量误差;
  • 结构模型:即潜变量间的路径分析,用来分析潜变量之间的影响关系。

SEM包含测量模型和结构模型两个基本模型如下图所示:

  • 观测变量:称为显变量,指可直接获取测量数据的具体指标;
  • 潜变量:则无法通过直接观测获得数值,需借助多个观测指标组合推导得出。

以创新研究为例:某人的专利数量、论文发表量等可直接统计的数据为观测变量,而其创新能力这种抽象特质需通过上述成果指标进行综合评估,这些成果即成为反映潜变量的观测载体。

2SEM路径图

结构方程模型路径图是结构方程模型的重要图示,能清晰地表达观测题项与潜变量、潜变量之间的关系。下面是一个简单的路径图:

1)观测变量与潜变量

观测变量:图中矩形框表示观测变量,如图中的A1~A4,B1~B3,这些是可以直接测量或观测的指标,在结构方程模型中一般是量表题。

潜变量:图中椭圆形表示潜变量,如“Factor1感知质量”、“Factor2感知价值”等,这些是无法直接测量的概念。

2)变量关系

影响关系:图中单箭头表示影响关系,即一个变量对另一个变量的直接影响。例如,“Factor1感知质量”对“Factor3顾客满意”有直接影响。

相关关系:双箭头表示相关关系,表示潜变量间的协方差或相关关系。在结构方程模型修正时,也可以创建测量误差间的双箭头,表示误差间的协方差或相关关系。

3)测量模型

红框为测量模型,例如A1~A4作为观测变量,可以用于测量“Factor1 感知质量”这个潜变量。B1~B3用于测量“Factor2感知价值”这个潜变量。

4)结构模型

中间部分“Factor3顾客满意”作为核心潜变量,受“Factor1感知质量”和“Factor2感知价值”的影响,并直接影响“Factor4顾客忠诚”。

3、混淆方法辨析

结构方程模型与路径分析主要区别就在于:完整的结构方程模型包含了测量模型和结构模型,如果仅包括结构模型,此时称作路径分析所以路径分析属于特殊的结构方程模型。除此以外,还有一些容易混淆的方法,都在下表中列出:

二、SPSSAU软件操作

从整体分析角度看,结构方程模型完整分析可以包括以下几个步骤:模型构建设置模型评估模型模型调整

建议:由于结构方程模型SEM构建前需要保障好测量关系的质量,建议SEM分析之前先进行探索性因子分析和验证性因子分析,确保测量关系良好后再进行SEM分析。

1、理论模型构建

下图为构建的顾客满意度模型:

  • 测量模型:观测变量A1~A4用于测量潜变量“感知质量”、B1~B3测量潜变量“感知价值”、C1~C3测量“顾客满意”、D1~D2测量“顾客忠诚”。
  • 结构模型:“感知质量”和“感知价值”对于“顾客满意”产生影响关系;“顾客满意”对“顾客忠诚”产生影响关系。

2、设置测量关系

首先从标题框中将A1~A4题拖拽至右侧Factor1分析框中,B1~B3题拖拽至Factor2分析框中、C1~C3题拖拽至Factor3分析框中、D1~D2题拖拽至Factor4分析框中,设定好测量模型,操作如下图:

3、设置影响关系

接下来在【设置模型关系】窗格,设定 4 个因子变量间的影响关系。在【第 1 项】下拉列表中选择【Factor1】,中间的关系类型下拉列表选择【影响→】,在【第 2 项】下拉列表中选择【Factor3】,即表示 Factor1→Factor3。单击【+】按钮能增加更多关系设定。同样的操作,设定 Factor1→Factor2、Factor2→Factor3、Factor3→Factor4 的影响关系。操作如下图:

提示:设置测量关系的潜变量,一定需要在 ‘影响关系’中出现;比如若测量关系中有Factor5,但是影响关系中却没有出现Factor5,此时一定会出错。

4、变量名称设置

SPSSAU默认潜变量的名称分别是Factor1,Factor2......,用户可以在设置名称中按模型设置潜变量名称,操作如下图:


由于本例无二阶结构关系,因此无须设定【设置量表二阶结构】,点击【开始分析】按钮,即可得到结构方程模型分析结果。

‍5、MI指标输出

在模型检验过程中,若发现模型适配度不理想,可以利用修正指数(MI)来指导模型修正此时,有两种主要的修正策略:一是调整协方差关系,二是调整影响关系。


接下来,回到模型设置界面,在顶部选择MI指标,例如设定“显示MI>10”,这样做意味着系统会列出所有MI值超过10的项(虽然MI值可能众多,但通常只有较高的MI值才具有实际的修正指导价值)。具体操作步骤如下图所示:

三、SPSSAU分析结果

SPSSAU共输出7个表格以及最终模型结果图,7个表格的作用汇总如下:

模型结果图如下:

分析结果详细解读可点击下方查看SPSSAU结构方程模型帮助手册:

结构方程模型

四、模型不达标处理

1、不达标原因

在实际研究中,结构方程模型容易出现不达标现象,比如卡方自由度,RMSEA,CFI值等不达标,至于出现不达标的原因,可能包括几点,分别是‘不正确使用’、‘测量关系不好’、‘模型不好’和‘数据质量差’,说明如下:

  • 关于不正确使用问题,需注意结构方程模型适用性有限,并非所有数据都适合。例如,类别数据如性别,使用模型可能导致不良结果。研究者应提前了解,避免分析时陷入困境。
  • 关于测量关系不好,通常需通过先行的探索性和验证性因子分析来确保测量关系没有问题后,再进行SEM分析,以减少对模型的负面影响。
  • 关于模型不好,指的是模型设定与实际数据不符。研究者可依据专业知识和MI指标进行修正或采取其他调整策略。
  • 关于数据质量差,样本量不足时需增加样本,而不真实数据会导致测量关系不佳,引发连锁问题。

2、处理思想

上述中的四大原因时,不正确使用和数据质量差不在考虑范畴。针对‘测量关系不好’和‘模型不好’两种情况,SEM调整可分为两大方式,分别是‘MI指标调整法’和‘模型调整法’,如下表格说明:

关于结构方程模型不达标处理的更多内容,可以点击查看下方SPSSAU帮助手册:

结构方程模型不达标调整

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值