机器学习:预测评估8类指标

机器学习:8类预测评估指标

R方值、平均值绝对误差值MAE、均方误差MSE、均方误差根EMSE、中位数绝对误差MAD、平均绝对百分误差MAPE、可解释方差分EVS、均方根对数误差MLSE。

一、R方值

1、说明:

R方值,也称为确定系数或拟合优度,是用于量化模型预测与真实数据之间拟合程度的指标。其值范围在0到1之间。

  • R方值接近0:表示模型几乎没有解释数据中的变化,即模型的预测与真实值之间几乎没有关系。
  • R方值接近1:表示模型解释了数据中的大部分变化,即模型的预测与真实值非常接近。

2、计算:

SST:是真实值与其均值之间差异的平方和,反映了数据中的总变化。

SSR:回归平方和,即回归模型可以解释的方差。它表示由自变量变化引起的因变量变化的部分,是可以用回归直线来解释的变差部分。

3、解读说明:

  • R方值过高:
    通常表示模型拟合得很好,能够解释数据中的大部分变化。但需要注意,高R方值并不一定意味着模型具有好的预测能力,特别是在存在过拟合的情况下。
  • R方值过低:
    可能表示模型拟合得不好,或者数据中的变化主要由随机噪声引起,而非模型能够解释的系统性规律。
  • R方值的比较

在比较不同模型的R方值时,需要注意数据的规模和特征。对于具有不同规模或特征的数据集,即使R方值相同,也可能表示模型具有不同的拟合能力。

二、平均绝对误差值MAE

1、说明:

预测值与实际值之差的绝对值的平均数,取值越小,模型准确度越高。

2、计算:

MAE=1𝑛∑𝑖=1𝑛|𝑦𝑖−𝑦^𝑖|

其中,n为样本个数,为真实值,为预测值。

3、解读说明:

  • 直观易懂:
    MAE是一个直观且易于理解的指标,因为它以与原始数据相同的单位来衡量误差。
  • 对异常值不敏感:
    由于MAE取的是绝对误差的平均值,因此它对数据中的异常值或极端值不敏感。这意味着即使数据中存在一些异常值,MAE值也不会受到太大的影响。
  • 评估预测精度:
    MAE直接反映了模型的预测精度,因为它衡量的是预测值与真实值之间的平均绝对差异。较小的MAE值表示模型具有更高的预测准确性。
  • 不受数据集规模影响:
    MAE是一个相对稳定的指标,它不受数据集规模的影响。因此,无论是在小数据集还是大数据集上,MAE都可以提供一致的评估结果。
    三、均值误差MSE
    1、说明:
    预测值与实际值之差的平方的平均值。取值越小,模型准确度越高。
    2、计算:
    MSE=1𝑛∑𝑖=1𝑛(𝑦𝑖−𝑦^𝑖)2
    其中,n为样本个数,为真实值,为预测值。
    3、解读说明:
  • 敏感性

MSE对预测误差的大小非常敏感,即使是较小的误差也会对MSE值产生较大的影响。因此,它能够有效反映模型的预测能力。

  • 计算简单

MSE的计算公式相对简单,易于理解和实现。

  • 对离群值敏感

MSE的一个主要缺点是它对数据中的离群值非常敏感。如果数据集中存在离群值,MSE的值可能会受到显著影响,导致对模型性能的评估不准确。

四、误差根RMSE

1、说明:

为 MSE 的平方根,取值越小,模型准确度越高。

2、计算:

RMSE=1𝑛∑𝑖=1𝑛(𝑦𝑖−𝑦^𝑖)2

其中,n为样本个数,为真实值,为预测值。

3、解释说明:

  • 敏感性

RMSE对预测误差的大小非常敏感,即使是较小的误差也会对RMSE值产生较大的影响。这有助于发现模型中的小偏差。

  • 量纲一致性

RMSE的单位与原始数据的单位相同,因此具有量纲一致性,便于理解和解释。

  • 对离群值敏感
    由于RMSE计算中涉及到平方操作,因此它对数据中的离群值非常敏感。如果数据集中存在离群值,RMSE的值可能会受到显著影响。
  • 数值范围

RMSE的取值范围是0到正无穷大。数值越小,表示模型的预测精度越高

五、数绝对误差MAD

说明

有异常值也可以使用。

[1]李文颖.基于深度学习的金融市场波动率预测研究及应用[D].东华大学,2023.DOI:10.27012/d.cnki.gdhuu.2023.000710.

六、平均绝对百分误差MAPE

1、说明:

预测值与实际值之差的绝对值与实际值之比的平均数,以百分比表示。取值越小,模型准确度越高。

2、判断标准:

MAPE取值范围是0到正无穷大。

在这个范围内,MAPE值越小,表示预测模型越准确,预测值与实际值之间的误差越小。

MAPE值小于10%:通常认为这是一个比较好的预测模型,预测精度较高。

MAPE值在10%-20%之间:预测精度仍然可以接受,但可能需要进行一些优化以提高准确性。

MAPE值大于20%:这表示预测效果不太理想,可能需要重新评估模型或寻找更好的预测方法。

七、可解释方差得分EVS

1、说明:

可解释方差得分(EVS)是衡量回归模型预测结果与实际结果之间方差相似度的一个指标。它反映了模型捕捉到的数据变异性的程度,即模型预测值的变化与实际值变化之间的相似度。

2、计算:

EVS = 1 - (ESS / TSS)

ESS:回归平方和、TSS总体平方和。

3、判断标准:

可释方差得分的取值范围为[0,1],当EVS为1时,表示模型完美预测了数据;当EVS为0时,表示模型无法解释数据方差。

在实际应用中,EVS通常用于比较不同模型的表现,取值越接近1,表示模型解释的数据方差越多,表现越好。

八、均方根对数误差MSLE

1、说明和计算:

计算的是预测值与实际值之间的对数差的平方的平均值,再取平方根。

2、判断标准:

  • 敏感性:
    MSLE对于预测值与实际值之间的比例误差非常敏感。当预测值与实际值相差很大时,即使它们的绝对值差异可能不大,MSLE也会给出一个较大的值,从而惩罚模型。
  • 对数据的分布敏感:

由于MSLE涉及到对数运算,因此它对数据的分布非常敏感。如果数据中存在大量的极端值或离群点,那么MSLE可能会给出不稳定的结果。

机器学习:预测评估8类指标

<think>好的,用户想了解如何在机器学习或深度学习框架中使用MAPE作为损失函数。首先,我需要确认MAPE的定义和公式。MAPE是平均绝对百分比误差,计公式是$\frac{100\%}{n}\sum_{i=1}^n \left|\frac{y_i - \hat{y}_i}{y_i}\right|$。用户可能关心如何实现这个损失函数,特别是在不同框架中的具体写法,比如TensorFlow、PyTorch等。 接下来,我需要考虑MAPE的优缺点。优点包括直观易懂,百分比形式方便解释;但缺点也很明显,比如当真实$y_i$接近零时,分母会导致数不稳定,甚至无限大的误差。这时候可能需要处理零或者使用替代指标,比如SMAPE。 然后,用户可能想知道如何在框架中避免这些问题。比如在TensorFlow中,可以给分母加上一个小常数epsilon,防止除以零的情况。同时,还要注意MAPE对低估和高估的惩罚不对称,这可能在某些应用中是缺点,比如需求预测时高估和低估的成本不同。 接下来,我需要提供具体的代码示例,展示在TensorFlow和PyTorch中如何实现MAPE损失函数。确保代码正确,并且处理了除零的问题。此外,可能需要提到替代方案,比如MAE或MSE,以及何时使用MAPE更合适,比如在需要百分比误差解释性的场景,如销量预测、能源需求预测等。 用户可能还会想知道MAPE的变体,比如对称MAPE(SMAPE),或者对数变换等其他方法。这些可以作为相关问题推荐,帮助用户扩展知识。同时,需要指出MAPE的局限性,比如不适合零多的数据集,或者对误差的不对称处理可能不符合业务需求。 最后,确保回答结构清晰,分点说明实现方法、注意事项、优缺点和应用场景,并附上代码示例和相关问题,帮助用户全面理解MAPE作为损失函数的使用。</think>### Mean Absolute Percentage Error (MAPE) 作为损失函数 #### 1. MAPE 的定义与公式 Mean Absolute Percentage Error (MAPE) 用于衡量预测与真实的相对误差,其公式为: $$ \text{MAPE} = \frac{100\%}{n} \sum_{i=1}^n \left| \frac{y_i - \hat{y}_i}{y_i} \right| $$ 其中,$y_i$ 是真实,$\hat{y}_i$ 是预测,$n$ 是样本数[^1]。 #### 2. 实现方式 在机器学习/深度学习框架中,MAPE 的实现需注意以下几点: - **分母处理**:当真实 $y_i$ 接近零时,需添加极小 $\epsilon$ 避免除零错误。 - **数稳定性**:使用绝对函数确保非负性。 **TensorFlow/Keras 示例**: ```python import tensorflow as tf def mape_loss(y_true, y_pred): epsilon = tf.keras.backend.epsilon() # 默认约为1e-7 return tf.reduce_mean(tf.abs((y_true - y_pred) / (y_true + epsilon))) * 100 ``` **PyTorch 示例**: ```python import torch def mape_loss(y_pred, y_true): epsilon = 1e-7 return torch.mean(torch.abs((y_true - y_pred) / (y_true + epsilon))) * 100 ``` #### 3. 优缺点分析 - **优点**: - 结果以百分比形式呈现,直观易解释; - 对数据尺度不敏感,适用于多尺度数据集。 - **缺点**: - 真实为零时失效; - 对低估和高估的惩罚不对称(例如,真实100,预测50的误差为50%,而预测150的误差为33.3%); - 在极端下可能不稳定[^1]。 #### 4. 应用场景 - 适合需百分比误差解释性的任务,例如: - 销量预测(如零售业库存管理); - 能源需求预测(如电力负荷预测)[^1]。 #### 5. 替代方案 - **sMAPE(对称MAPE)**:解决分母为零问题,公式为: $$ \text{sMAPE} = \frac{200\%}{n} \sum_{i=1}^n \frac{|y_i - \hat{y}_i|}{|y_i| + |\hat{y}_i|} $$ - **MAE/MSE**:若数据含零较多,优先选择绝对误差(MAE)或均方误差(MSE)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值