正交表是一种高效的实验设计工具,尤其适用于多因素实验。它能够在保证实验结果可靠性的前提下,显著减少实验次数,帮助研究者快速找到影响实验结果的关键因素,从而提高实验效率,节约实验资源。今天就来介绍下正交试验设计的相关知识。
一、正交表生成
正交表是一种特制的表格,用于多因素实验设计研究。根据正交表的正交性,可以从全面试验中挑选尽可能少有代表性的组合进行实验,这些组合具有“均衡分散、整齐可比”的特点。
1、正交表的构成
(1)因数与水平
在理解正交表的构成之前,需要先理解进行正交试验因素与水平的概念。
- 因素:指实验中的变量;例如温度、时间、催化剂种类,共三因素。
- 水平:指实验因素的不同取值;例如温度分为30℃、50℃、80℃,那么代表温度这个因素是三水平。
通常形容正交试验时,直接说进行几因素几水平正交试验,例如三因素三水平正交试验。
(2)表示形式
正交表通常表现形式为:
- L表示正交表,行数表示需要进行的实验次数;
- 因素数代表实验中变量的个数,即正交表中列的个数;
- 水平数代表每个因素的水平数。
举例说明:例如正交表,L右下角数字“9”表示有9行,即需要做9次实验。括号内指数“4”代表有4列,即最多可观察4个因素。括号内数“3”表示每个因素均为3水平,那么表的主体部分只有数字1,2,3,分别代表水平1,2,3。
2、正交表生成
在SPSSAU中,选择【实验/医学研究】—[正交实验],选择因子个数及水平数,点击[开始分析]按钮即可生成对应正交表。
SPSSAU输出四因素三水平正交表如下:
SPSSAU默认找到最接近的标准正交表,比如预期找3个因素的正交表,3个因素分别有3,4或5个水平。若生成的正交表与预期因素数水平数不一致,需要结合拟水平法,组合法,并列法对正交表进行改造,具体可查看下方帮助手册说明:
3、正交表的性质
- 整齐可比性——每一列中不同数字出现的次数相等
是指正交表中任意两列的水平组合均匀分布,且每种组合出现的次数相同。例如在上面四因素三水平正交表中,每一列中数字1,2,3出现的次数都是3次,满足整齐可比性。
- 均衡分散性——任意两列的数字排列方式齐全且均衡
是指正交表中每个因素的各水平在试验中均匀分布,每个水平出现的次数相等。例如上面四因素三水平正交表中,任意两列数字对共有9种,(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3),且每对出现次数相等。
- 非唯一性——对于给定的因素数和水平数,可以存在多个不同的正交表
正交表并不是唯一的,正交表的设计可以根据实验的因素数量和每个因素的水平数来生成多种不同的表格。每种正交表都可以有不同的排列组合,这就是为什么不同软件生成的正交表会有些许不同。所以SPSSAU软件生成的正交表大家可以放心使用。
二、正交试验与极差分析
进行多因素正交试验设计与分析的一般步骤如下:
①明确试验目标,确定因素与水平;
②使用SPSSAU生成合适的正交表;
③根据正交表进行正交试验,得到试验结果;
④使用极差分析或方差分析对试验进行分析,得到最优试验条件。
1、确定因素水平
使用唐佳丽《正交试验中的极差分析与方差分析》这篇文献中的案例数据,研究弹簧的弹性与A回火温度、B保温时间、C工件质量的关系,希望找出3个因素时各水平的最佳弹簧弹性组合,因素水平表如下:
2、生成正交表
根据研究因素水平数可知应该选择三因素三水平正交表,利用SPSSAU生成正交表如下:
3、进行正交试验
得到正交表后,把表中各列因子下的数字“1”、“2”、“3”,分别换成各因子在试验中的水平值,并根据此表格安排试验方案,得到正交试验结果,整理成如下表格:
表格中水平数量使用数字表示,比如A回火温度里面的数字1表示440℃,数字2表示460℃。上传数据至SPSSAU系统,可在【数据处理】模块,对因素的各水平设置【数据标签】,如下图:
4、极差分析
极差分析(也称直观分析法)是正交试验结果分析中最常用的方法,简单易懂、计算简便,各因素各水平的平均效应,通过极差大小判断因素的影响程度,就可以找出各因素的最优水平组合。
上传正交试验结果表格至SPSSAU系统中,进行【极差分析】,选择试验数据类型为越大越好(弹簧弹性越大越好),操作如下图:
SPSSAU输出极差分析结果如下表:
极差分析的相关指标说明,如下表所示:
从极差分析结果表格可以得知,从3个因子来看,结合因子极差值R大小对比可知,因子A回火温度为最优因子,其次为因子C工体质量,最后是因子B保温时间。因此3个因子的优劣排序为:A回火温度>C工体质量>B保温时间。
具体结合最佳水平(K avg最大时对应的水平)可知,因子A回火温度对应水平1即440℃时最优;因子B保温时间对应水平1即3min时最优;因子C工体质量对应水平2即353kg时最优。所以,弹簧的弹性的最优条件为“A回火温度440℃、B保温时间3min、C工体质量353kg”。
还可以通过折线图直观查看结果,如下图:
通过上图,可以很直观的看出,A回火温度的极差最大为最优因子;弹簧的弹性的最优条件为“A回火温度440℃、B保温时间3min、C工体质量353kg”。
三、正交试验与方差分析
极差分析虽然可以将所考察的因素进行主次的排序,得到了主要的因素,但这种因素对试验的影响是否显著,在什么水平显著,使用极差分析是无法确定的。因此,在实际应用中,可以使用方差分析对正交试验结果进行分析。
在SPSSAU中选择多因素方差分析,将变量拖拽到右侧分析框中,点击开始分析,操作如下图:
SPSSAU输出多因素方差分析结果如下:
由统计学知识可知,F值越大,其相应的因素对试验的影响程度越高,故能根据F值的大小排列出因素的主次程度。分析上表得知:A回火温度对弹簧弹性的影响在0.05水平上显著(F=67.597,p=0.015<0.05),为最佳因素;B保温时间和C工体质量对弹簧弹性的影响并不显著。所以对比发现3个因素的影响主次排序为:“A回火温度>C工体质量>B保温时间”。
正交试验数据分析时,极差分析与方差分析对比: