# matlab与机器学习（一）基础知识（含代码解析）

%注释其后面的内容

代码可以复制%之间的内容（包括%）%到MATLAB里执行

%% I. 清空环境变量及命令

clear all   % 清除Workspace中的所有变量
clc         % 清除Command Window中的所有命令

%% II. 变量命令规则
%%
% 1. 变量名区分大小写
A = 2
a = 3

%%

% 2. 变量名长度不超过63位

% ABCDEFGHIJKLMNOPQRSTUVWXYZ123456ABCDEFGHIJKLMNOPQRSTUVWXYZ123456 = 3

%%
% 3. 变量名以字母开头，可以由字母、数字和下划线组成，但不能使用标点
% 3A = 4
% .a = 5
% /b = 5
a_2 = 3
% a.2 = 4

%%
% 4. 变量名应简洁明了，通过变量名可以直观看出变量所表示的物理意义
A = rand(3,5)
rows = size(A, 1)
cols = size(A, 2)

%% III. MATLAB数据类型

%%
% 1. 数字
2 + 4

10 - 7

3 * 5

8 / 2

%%
% 2. 字符与字符串
s = 'a'
abs(s)
char(65)
num2str(65)

str = 'I Love MATLAB & Machine Learning.'

length(str)

doc num2str

%%
% 3. 矩阵
A = [1 2 3; 4 5 2; 3 2 7]
B = A'
C = A(:)
D = inv(A)
A * D

E = zeros(10,5,3)
E(:,:,1) = rand(10,5)
E(:,:,2) = randi(5, 10,5)
E(:,:,3) = randn(10,5)

%%
% 4. 元胞数组
A = cell(1, 6)
A{2} = eye(3)
A{5} = magic(5)
B = A{5}

%%
% 5. 结构体
books = struct('name',{{'Machine Learning','Data Mining'}},'price',[30 40])
books.name
books.name(1)
books.name{1}

%% IV. MATLAB矩阵操作
%%
% 1. 矩阵的定义与构造
A = [1 2 3 5 8 5 4 6]
B = 1:2:9
C = repmat(B, 3, 1)
D = ones(2, 4)

%%
% 2. 矩阵的四则运算
A = [1 2 3 4; 5 6 7 8]
B = [1 1 2 2; 2 2 1 1]
C = A + B
D = A - B
E = A * B'
F = A .* B
G = A / B     % G * B = A     G * B * pinv(B) = A * pinv(B)    G = A * pinv(B)
H = A ./ B

%%
% 3. 矩阵的下标
A = magic(5)
B = A(2,3)
C = A(3,:)
D = A(:,4)
[m, n] = find(A > 20)

%% V. MATLAB逻辑与流程控制

%%
% 1. if ... else ... end
A = rand(1,10)
limit = 0.75;

B = (A > limit);   % B is a vector of logical values
if any(B)
fprintf('Indices of values > %4.2f: \n', limit);
disp(find(B))
else
disp('All values are below the limit.')
end

%%
% 2. for ... end
k = 10;
hilbert = zeros(k,k);      % Preallocate matrix

for m = 1:k
for n = 1:k
hilbert(m,n) = 1/(m+n -1);
end
end
hilbert

%%
% 3. while ... end
n = 1;
nFactorial = 1;
while nFactorial < 1e100
n = n + 1;
nFactorial = nFactorial * n;
end
n

factorial(69)
factorial(70)

prod(1:69)
prod(1:70)

%%
% 4. switch ... case ... end
mynumber = input('Enter a number:');

switch mynumber
case -1
disp('negative one');
case 0
disp('zero');
case 1
disp('positive one');
otherwise
disp('other value');
end

%% VI. MATLAB脚本与函数文件

%%
% 1. 脚本文件
myScript

%%
% 2. 函数文件
mynumber = input('Enter a number:');
output = myFunction(mynumber)

%% VII. MATLAB基本绘图操作

%%
% 1. 二维平面绘图
x = 0:0.01:2*pi;
y = sin(x);
figure
plot(x, y)
title('y = sin(x)')
xlabel('x')
ylabel('sin(x)')
xlim([0 2*pi])

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
figure
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');
set(get(AX(1),'Ylabel'),'String','Slow Decay')
set(get(AX(2),'Ylabel'),'String','Fast Decay')
xlabel('Time (\musec)')
title('Multiple Decay Rates')
set(H1,'LineStyle','--')
set(H2,'LineStyle',':')

%%
% 2. 三维立体绘图
t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
xlabel('sin(t)')
ylabel('cos(t)')
zlabel('t')
grid on
axis square

%%
% 3. 图形的保存与导出

% (1) Edit → Copy Figure
% (2) Toolbar → Save
% (3) print('-depsc','-tiff','-r300','picture1')
% (4) File → Export Setup

%% VIII. MATLAB文件导入
%%
% 1. mat格式
save data.mat x y1 y2
clear all

%%
% 2. txt格式
M = importdata('myfile.txt');

S = M.data;
save 'data.txt' S -ascii

isequal(S, T)

%%
% 3. xls格式
xlswrite('data.xls',S)
isequal(S, W)

xlswrite('data.xlsx',S)
isequal(S, U)

%%
% 4. csv格式
csvwrite('data.csv',S)
isequal(S, V)

05-08
11-24
05-24
10-19
03-04 3879
01-18
10-25
02-19
10-25 225
08-07 1790
07-08 7705
10-19 9038
03-20 9476