芯片设计中的AI方法-资料留存

本文介绍了GRANNITE,一款利用图神经网络进行可迁移的功率估算,以及PowerNet,一个通过卷积神经网络预测动态IR降的模型。两者分别在快速准确性和适应新设计上展现了优势,显著提升效率并减少误差。
摘要由CSDN通过智能技术生成

功率和 IR 压降分析

流片前功率估计和优化是当今所有芯片设计流程的一个关键方面。准确的分析需要在带有注释电容寄生的门级网表上运行逻辑仿真。然而,这些模拟非常缓慢,通常每秒运行 10-1000 个时钟周期,具体取决于活动因素和设计大小。为了提供更快而准确的功率估计,ML 模型可以通过在没有仿真的情况下通过逻辑网表估计开关活动因子的传播来预测动态功率。

GRANNITE以 PRIMAL 流程为基础,通过 GNN 实现模型可迁移到新设计。门网表被转换成具有每节点(门)和每边(网)特征的图形,例如每个门的固有状态概率。GNN 可以从图和输入激活特征中学习,同样 GRANNITE 可以从 RTL 模拟跟踪数据和输入图(网表)数据中学习。通过这种方式,模型变得能够转移到新图(网表)和新工作负载。结果表明,GRANNITE 在对高达 50k 门的设计进行快速(<1 秒)平均功率估计时实现了良好的准确性(在各种基准测试中误差小于 5.5%)。

PowerNet 通过直接从每个单元的功率分布预测 IR 降来克服这一挑战。PowerNet 使用时序窗口期间每个单元的开关功耗作为输入特征。它通过使用真实模拟结果作为标签的监督学习进行训练,以预测所有时序窗口中每个单元的最大 IR 降。由于其特征和模型遵循来自 IR 压降分析的首要原则,因此 PowerNet 可以推断训练期间未见过的设计的 IR 压降。与之前提出的用于无向量 IR 压降预测的最佳 ML 方法相比,它的准确度提高了 9%,并且与商用 IR 压降分析工具相比,速度提高了 30倍。

GRANNITE对应论文

Y. Zhang et al., “GRANNITE: Graph neural network inference for transferable power estimation,” in Proc. Des. Autom. Conf., 2020, pp. 1–6.

PowerNet 对应论文

Z. Xie et al., “PowerNet: Transferable dynamic IR drop estimation via maximum convolutional neural network,” in Proc. 25th Asia South Pacific Des. Autom. Conf., 2020.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值