题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1233
还是畅通工程
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
Huge input, scanf is recommended.
Hint
Hint
prim算法代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int n,u,v,w;
int e[111][111],visit[111],dis[111];
const int inf=999999;
void init()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
e[i][j]=0;
else
e[i][j]=inf;
}
}
}
void prim()
{
int i,j,k,min;
for(i=1;i<=n;i++)
{
dis[i]=e[1][i];
}
memset(visit,0,sizeof(visit));
visit[1]=1;
int sum=0,count=1;
while(count<n)
{
min=inf;
for(i=1;i<=n;i++)
{
if(visit[i]==0&&dis[i]<min)
{
min=dis[i];
j=i;
}
}
visit[j]=1;
count++;
sum=sum+dis[j];
for(k=1;k<=n;k++)
{
if(visit[k]==0&&dis[k]>e[j][k])
dis[k]=e[j][k];
}
}
cout<<sum<<endl;
}
int main()
{
while(cin>>n)
{
int m=n*(n-1)/2;
if(n==0)
break;
init();
for(int i=1;i<=m;i++)
{
cin>>u>>v>>w;
e[u][v]=w;
e[v][u]=w;
}
prim();
}
return 0;
}
kruskal算法代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct edge{
int u,v,w;
}e[11111];
int n;
int pre[111111];
int find(int v)
{
if(pre[v]==v)
return v;
else
{
pre[v]=find(pre[v]);
return pre[v];
}
}
int merge(int u,int v)
{
int t1=find(u);
int t2=find(v);
if(t1!=t2)
{
pre[t2]=t1;
return 1;
}
return 0;
}
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int main()
{
int i;
while(~scanf("%d",&n))
{
if(n==0)
break;
int m=n*(n-1)/2;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
}
sort(e+1,e+m+1,cmp);
//初始化
for(i=1;i<=n;i++)
{
pre[i]=i;
}
int count=0,sum=0;
for(i=1;i<=m;i++)
{
if(merge(e[i].u,e[i].v))
{
count++;
sum=sum+e[i].w;
}
if(count==n-1)
break;
}
printf("%d\n",sum);
}
return 0;
}