学习笔记
转载自:https://www.cnblogs.com/qiuhlee/p/9298877.html
MM算法思想
MM算法是一种迭代优化方法,它利用函数的凸性来找到原函数的最大值或最小值。当原目标函数 f ( θ ) f(θ) f(θ)较难优化时,算法不直接对原目标函数求最优解,而去求解逼近于原目标函数的一个易于优化的目标函数 g ( θ ) g(θ) g(θ),通过对这个替代函数求解,使得 g ( θ ) g(θ) g(θ)的最优解逼近于 f ( θ ) f(θ) f(θ)的最优解。每迭代一次,根据所求解构造用于下一次迭代的新的替代函数,然后对新的替代函数最优化求解得到下一次迭代的求解。通过多次迭代,可以得到越来越接近目标函数最优解的解。
MM代表“Majorize-Minimization”或“Minorize-Maximization”,取决于所需的优化是最大化还是最小化。
- Majorize-Minimization:每次迭代找到原非凸目标函数的一个上界函数,求上界函数的最小值。
- Minorize-Maximization:每次迭代找到原非凸目标函数的一个下界函数,求下界函数的最大值。
以Minorize-Maximization为例, 使目标函数 f ( θ ) f(θ) f(θ)最大化。
在算法的第
m
(
m
=
0
,
1...
)
m(m=0,1...)
m(m=0,1...)步,若满足以下条件,则目标函数
f
(
θ
m
)
f(θ_m)
f(θm)可用构造函数
g
m
(
θ
m
)
g_m(θ_m)
gm(θm)代替:
c
o
n
d
i
t
i
o
n
1
:
g
m
(
θ
)
≤
f
(
θ
m
)
∀
θ
c
o
n
d
i
t
i
o
n
2
:
g
m
(
θ
m
)
=
f
(
θ
m
)
condition \; 1: \; g_m(\theta) \le f(\theta_m) \; \forall \theta \\ condition \; 2: g_m(\theta_m) = f(\theta_m)
condition1:gm(θ)≤f(θm)∀θcondition2:gm(θm)=f(θm)
MM算法步骤
- 使 m = 1 m=1 m=1,并初始化 θ 0 {\theta}_0 θ0。
- 构造 g m ( θ ) g_m(θ) gm(θ)满足条件(1)和(2)。
- 令 θ m + 1 = a r g min θ g m ( θ ) θ_{m+1} = arg \min_θ g_m(θ) θm+1=argminθgm(θ)。
- 使 m = m + 1 m=m+1 m=m+1,返回步骤2。
θ
m
\theta_m
θm和目标函数的替代函数的迭代步骤如下图所示:
EM算法
期望最大化(EM)算法可以被视为MM算法的特殊情况,在机器学习中经常用到。MM算法与EM算法有联系但是又有区别,在EM算法中通常涉及条件期望,而在MM算法中,凸性和不等式是主要焦点。