最优化(part1)--近似点梯度法

本文介绍了近似点梯度法在处理包含光滑和非光滑部分的优化问题中的作用,特别是针对LASSO问题。通过引入邻近算子,该算法能够克服次梯度算法的局限性,保持较快的收敛速度。文中详细讨论了邻近算子的定义、性质以及在处理复合优化问题中的应用,并给出了LASSO问题的求解示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习笔记,仅供参考,有错必纠



近似点梯度法

在机器学习、图像处理领域中,许多模型包含两部分:一部分是误差项,一般为光滑函数;另外一部分是正则项,可能为非光滑函数,用来保证求解问题的特殊结构.例如最常见的 LASSO 问题就是用 l 1 l_1 l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值