Spatial-Channel Sequeeze & Excitation (SCSE)-8-June-2018【论文理解】


在这里插入图片描述

前言

在分割领域,目前的网络改进方式一般是改进encoding层,或者是改进跨层连接的方式;但是此篇论文受到SE(squeeze&excitation)模块的提示,提出了另外三种模式sSE,cSE,scSE,来对网络特征进行调整,重视(加大权重)重要的特征图或者是特征通道,减小不重要特征的影响,从而改善图像分割结果。其实第三种就是第一种和第二种的粗暴结合。实验了在大脑MRI分割中的效果。

SE(cSE)

SE(squeeze&excitation)[1]核心思想在于通过网络根据loss去学习特征权重,使得有效的feature map权重大,无效或效果小的feature map权重小的方式训练模型达到更好的结果。当然,SE block嵌在原有的一些分类网络中不可避免地增加了一些参数和计算量,但是在效果面前还是可以接受的。模块如下图所示:
在这里插入图片描述
具体可以过程可以参考博客[2],过程其实和[1]是一样的。此处的SE即cSE,Spatial Squeeze and Channel Excitation Block,核心操作是全局池化层以及两层全连接层。本论文中图如下:
在这里插入图片描述
在这里插入图片描述
输入特征图为 U = [ u 1 , u 2 , . . . , u c ] U= [u_1,u_2,...,u_c] U=[u1,u2,...,uc],其中每个通道 u i u_i ui, u i ∈ R H ∗ W u_i \in\mathbb{R}^{H*W} uiRHW,U经过全局池化层(GAP)之后得到向量z, z ∈ R 1 ∗ 1 ∗ C z \in\mathbb{R}^{1*1*C} zR11C
每个位置k的值为:
在这里插入图片描述
得到的向量经过两次全连接层, W 1 W_1 W1, W 2 W_2 W2分别为全连接层的权重,过程如下:
在这里插入图片描述
此处与[1]略有不同,[1]使用的是16,即 C ∗ C 16 C*\frac{C}{16} C16C,此处为2。之后经过ReLU,这个过程增强了各个通道之间的独立性。对 z ^ \hat{z} z^经过sigmod层,归一化到0到1之间得 σ ( z ^ ) \sigma(\hat{z}) σ(z^)。整个过程可以用如下公式来代表:
在这里插入图片描述
z i ^ \hat{z_i} zi^代表的信息就是第i个通道 u i u_i ui的重要性程度。

sCE

先在通道上进行压缩,再在空间部分上进行Excitation ,如下图所示:
在这里插入图片描述
对于输入层的一个特征图, U = [ u 1 , 1 , u 1 , 2 , . . . . , u i , j , . . . . . , u H , W , ] U = [u^{1,1},u^{1,2},....,u^{i,j},.....,u^{H,W},] U=[u1,1,u1,2,....,ui,j,.....,uH,W,],H,W分别为特征图的尺寸,(i,j)为特征图的空间位置,通过卷积实现空间挤压操作,此处的卷积为1×1的卷积,且输出通道数为1,如下: W s q ∈ R 1 ∗ 1 ∗ C ∗ 1 W_{sq}\in\mathbb{R}^{1*1*C*1} WsqR11C1,操作如下:
在这里插入图片描述
输出为q,q为通道为1的特征图,再经过sigmod对其进行归一化操作到[0-1].操作如下:
在这里插入图片描述
其中 σ ( q i , j ) \sigma(q_{i,j}) σ(qi,j)代表特征图中空间位置坐标(i,j)的重要性。

scCE

Spatial and Channel Squeeze & Excitation Block (scSE),即以上两者的结合,如下图所示:
在这里插入图片描述
还是比较通俗易懂的操作。
在这里插入图片描述

模型复杂度分析

【TODO】

分割结果展示

在这里插入图片描述

参考

[1]Hu, J., Shen, L. and Sun, G. Squeeze-and-excitation networks. In CVPR 2018.
[2]https://blog.csdn.net/yimingsilence/article/details/79233650

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值