前言
在分割领域,目前的网络改进方式一般是改进encoding层,或者是改进跨层连接的方式;但是此篇论文受到SE(squeeze&excitation)模块的提示,提出了另外三种模式sSE,cSE,scSE,来对网络特征进行调整,重视(加大权重)重要的特征图或者是特征通道,减小不重要特征的影响,从而改善图像分割结果。其实第三种就是第一种和第二种的粗暴结合。实验了在大脑MRI分割中的效果。
SE(cSE)
SE(squeeze&excitation)[1]核心思想在于通过网络根据loss去学习特征权重,使得有效的feature map权重大,无效或效果小的feature map权重小的方式训练模型达到更好的结果。当然,SE block嵌在原有的一些分类网络中不可避免地增加了一些参数和计算量,但是在效果面前还是可以接受的。模块如下图所示:
具体可以过程可以参考博客[2],过程其实和[1]是一样的。此处的SE即cSE,Spatial Squeeze and Channel Excitation Block,核心操作是全局池化层以及两层全连接层。本论文中图如下:
输入特征图为
U
=
[
u
1
,
u
2
,
.
.
.
,
u
c
]
U= [u_1,u_2,...,u_c]
U=[u1,u2,...,uc],其中每个通道
u
i
u_i
ui,
u
i
∈
R
H
∗
W
u_i \in\mathbb{R}^{H*W}
ui∈RH∗W,U经过全局池化层(GAP)之后得到向量z,
z
∈
R
1
∗
1
∗
C
z \in\mathbb{R}^{1*1*C}
z∈R1∗1∗C
每个位置k的值为:
得到的向量经过两次全连接层,
W
1
W_1
W1,
W
2
W_2
W2分别为全连接层的权重,过程如下:
此处与[1]略有不同,[1]使用的是16,即
C
∗
C
16
C*\frac{C}{16}
C∗16C,此处为2。之后经过ReLU,这个过程增强了各个通道之间的独立性。对
z
^
\hat{z}
z^经过sigmod层,归一化到0到1之间得
σ
(
z
^
)
\sigma(\hat{z})
σ(z^)。整个过程可以用如下公式来代表:
z
i
^
\hat{z_i}
zi^代表的信息就是第i个通道
u
i
u_i
ui的重要性程度。
sCE
先在通道上进行压缩,再在空间部分上进行Excitation ,如下图所示:
对于输入层的一个特征图,
U
=
[
u
1
,
1
,
u
1
,
2
,
.
.
.
.
,
u
i
,
j
,
.
.
.
.
.
,
u
H
,
W
,
]
U = [u^{1,1},u^{1,2},....,u^{i,j},.....,u^{H,W},]
U=[u1,1,u1,2,....,ui,j,.....,uH,W,],H,W分别为特征图的尺寸,(i,j)为特征图的空间位置,通过卷积实现空间挤压操作,此处的卷积为1×1的卷积,且输出通道数为1,如下:
W
s
q
∈
R
1
∗
1
∗
C
∗
1
W_{sq}\in\mathbb{R}^{1*1*C*1}
Wsq∈R1∗1∗C∗1,操作如下:
输出为q,q为通道为1的特征图,再经过sigmod对其进行归一化操作到[0-1].操作如下:
其中
σ
(
q
i
,
j
)
\sigma(q_{i,j})
σ(qi,j)代表特征图中空间位置坐标(i,j)的重要性。
scCE
Spatial and Channel Squeeze & Excitation Block (scSE),即以上两者的结合,如下图所示:
还是比较通俗易懂的操作。
模型复杂度分析
【TODO】
分割结果展示
参考
[1]Hu, J., Shen, L. and Sun, G. Squeeze-and-excitation networks. In CVPR 2018.
[2]https://blog.csdn.net/yimingsilence/article/details/79233650