【计算机视觉面经二】卷积神经网络中的理解:通道(channel)和空间(spatial)信息

本文深入探讨了计算机视觉中卷积神经网络(CNN)的通道(Channel)和空间(Spatial)信息。通道最初指代RGB或CMYK颜色通道,但在CNN中代表特征图,反映了特定特征的强度。1x1卷积用于通道间的交互,可以看作特征的重新组织。空间信息涉及图像像素的位置、分布和结构,CNN通过保留和利用空间信息处理图像任务,如分类、检测和分割。
摘要由CSDN通过智能技术生成

一、通道(Channel)

通道(Channel),也有叫特征图(feature map)的。

首先,之前的文章也提到过了,卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling)

池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作。

而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是InceptNet里大量用到的 1 × 1 1\times 1 1×

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值