论文阅读《Multi-Graph Convolution Collaborative Filtering》

多图卷积系统过滤《Multi-Graph Convolution Collaborative Filtering》

对这篇文章比较感兴趣,先读一读,再做思考!

摘要

个性化推荐无处不在,在许多在线服务中发挥着重要作用。实体研究致力于学习用户和项目的向量表示,目的是根据表示的相似性预测用户对项目的偏好。技术范围从经典的矩阵分解到最近的基于深度学习的方法。然而,现有的方法并没有充分利用用户-项目交互数据中的信息以及用户对和项目对之间的相似性。在这项工作中,我们开发了一个基于图卷积的推荐框架,称为多图卷积协同过滤(Multi-GCCF)。Multi-GCCF不仅通过一个独立的用户-项目交互图来表达高阶信息,而且通过建立和处理用户-用户-项目-项目图来整合基本信息。此外,在对二部图进行卷积时,我们考虑了用户节点和项目节点之间的本质差异。我们在四个可公开访问的基准上进行了大量的实验,显示了相对于几种最先进的协同过滤和基于图神经网络的推荐模型的显著改进。进一步的实验定量地验证了我们提出的模型中每个组成部分的有效性,并证明了所学习的嵌入具有重要的关系结构.

关键字-图神经网络;推荐系统;协同过滤

引言

快速准确地预测用户的偏好是当今推荐系统的最终目标[1]。准确的个性化推荐系统对需求方和供应方都有好处,包括内容发布方和平台。因此,推荐系统不仅引起了学术界的极大兴趣[2]-[4],而且在工业界得到了广泛的发展[5]、[6]。推荐系统后面的核心方法是协同过滤(CF)[7],[8],支持协同过滤的基本假设是相似的用户倾向于喜欢相同的项目,而拥有相似受众的项目往往会从个人那里获得相似的评分。

矩阵分解(MF)[8]-[10]是执行col-laborative filtering(MF)[8]-[10]的最成功的方法之一。MF模型通过在同一空间中的向量来描述项目和用户,从用户-项目历史交互的观察条目中推断出来。最近,人们引入了深度学习模型来提高传统MF模型的性能。然而,正如[11]所观察到的,基于深度学习的推荐模型不足以产生最优的嵌入,因为它们只考虑用户和项目的特征。在开发嵌入式系统时,用户项交互没有明确的结合,交互只是用来定义模型训练的学习对象。深度学习模型的第二个局限性是依赖于用户的明确反馈,这通常是相对的稀疏。方位考虑到这些局限性,一个自然的策略就是开发机制,将用户项交互直接包含到嵌入构造中。Ying等人最近的工作。[12] 以及Wang等人。[11] 演示了处理二部图的有效性,报告了超过最新水平的改进模型。尽管如此他们的有效性,我们认为有两个重要的模仿。首先这些模型忽略了二分图中两类节点(用户和项目)之间的内在差异。在嵌入构造过程中,当聚集来自图中相邻节点的信息时,[11]、[12]中的体系结构以相同的方式组合信息,使用与节点性质无关的函数。然而,在真实环境中,用户和项目之间有一个重要的本质区别。这表明聚合和转换函数应取决于实体。第二,用户-用户和项目项关系也是非常重要的信号。虽然二部图中的两跳邻域在一定程度上捕捉到了这些特征,但是我们有理由假设我们可以通过构造和学习直接模拟用户用户和项目项的图来提高推荐质量关系。

本文提出了一种新的基于图卷积神经网络(GCNN)的推荐系统框架

·捕捉用户和项目之间的内在差异:当使用图神经学习时,我们应用单独的聚合和转换函数来处理用户节点和项目节点网络。我们发现用户和项目嵌入的学习更加精确,推荐性能也得到了提高。

·建模用户-用户和项目项关系:我们建造分离用户用户和项目项图表。多重-GCCF在所有三个图上同时进行学习,并使用多图编码层将用户项、用户用户和项目项图提供的信息进行集成

我们对四个真实世界的数据集进行了实证研究,这些数据集包含了超过一百万个用户项的交互作用。大量的结果证明了多GCCF比最强大的最先进模型的优越性。

 

相关工作-基于图的推荐

图是在推荐系统中表示丰富的成对关系信息的自然工具。Earlyworks[18]–[20]在用户项交互图中使用了标签传播和随机游走,以获得用户项对的相似性分数。随着图神经网络(GNNs)[21]–[24]的新兴领域,越来越多的研究开始应用图神经网络[11]、[12]、[25]。图进化矩阵完成(GCMC)[25]将推荐问题作为一个矩阵完成任务来处理,并采用了一种图形卷积自动编码器。PinSAGE[12]将图神经网络应用于通过对项目之间的相似性建模而形成的项目-项目图。神经网络图协同过滤(NGCF)[11]处理二部用户-项目交互图来学习用户和项目嵌入.

方法

在本节中,我们将解释方法。首先, 我们开发了一个二部图卷积神经网络(Bipar-GCN),它作为一个编码器,通过处理用户-项目交互的二部分来生成用户和项目的嵌入图表。第二多图编码层(MGE)通过构造和处理多个图对潜在信息进行编码用户-项目二部图,另两个图分别表示用户-用户相似性和项目-项目相似性。第三,初始节点特征和最终嵌入之间的跳过连接结构允许我们利用原始特征中未被图形处理捕获的任何剩余信息。在二部图的框架下,用户可以很容易地描述为一个二部图。我们应用一个二部图卷积神经网络(Bipar-GCN),一边代表用户节点,另一边代表项目节点,如图2所示。Bipar GCN层包括两个阶段:向前采样和向后采样聚合。前向采样阶段被设计用来处理二分体中度分布的长尾性质图形。用于例如,受欢迎的项目可能会吸引许多用户的交互,而其他项目可能会吸引非常多很少。之后从第1层开始取样,Bipar-GCN通过图的卷积,对用户和项目节点进行迭代聚合k跳邻域信息编码。每个用户和itemv都有初始的嵌入和vt。这些嵌入与GCNs的参数同时被学习。如果这里有信息输入特性xuorxv,那么初始嵌入可以是特征的函数(例如,应用toxu的MLP的输出)。目标用户的层基元可以表示为:hku=σ(Wku·[hk−1u;hk−1N(u)),h0u=eu,(1)其中eu是初始用户嵌入,[;]表示范围,σ(·)是激活函数,WKUIS所有用户共享的k层(用户)转换权重矩阵节点.hk−1N(u)是学习的邻域嵌入。

多图编码层

为了解决CF中的数据稀疏问题,提出了一种多图编码(MGE)层,该层通过构造两个附加图并应用图进化学习,为目标用户或项目节点生成一个附加嵌入他们。进来特别是,除了用户项二分之一图,我们构造了一个用户-用户图和一个项目-项目图来获取用户和项目之间的接近信息物品。这个邻近信息可以弥补项目交互二部图的稀疏性。这些图是通过计算评级/点击的行或列上的成对余弦相似性来构造的矩阵。英寸在MGE层,我们使用一个单跳图卷积层和一个和a来聚合邻域特征,生成目标节点的嵌入集合者:zu=σ(∑i∈N′(u)ei·Mu);zv=σ(∑j∈N′(v)ej·Mv)。(4)其中N′(u)表示用户在用户图中的一跳邻域,N′(v)表示该项的项的一跳邻域图形.MuandMvare可学习的用户和项目聚合权重矩阵。在与Bipar GCN层相比,在MGE层中不进行额外的近波源采样。我们根据余弦相似性选择阈值,每个阈值的平均度为10图表编制人将Bipar-GCN和MGElayers的输出合并在一起,可以利用这三个图编码的不同依赖关系。这三个图都可以很容易地从历史交互数据中构造出来,只需非常有限的额外计算成本。

C.跳过与原始节点特征的连接,利用直接从原始节点特征传递的信息进一步细化嵌入。后面的直觉是Bipar GCN和MGE都专注于基于关系提取潜在信息。因此,初始节点特征的影响变得更小占主导地位跳过连接允许架构重新强调这些特色。我们将原始特征通过一个完全连接的层来生成跳过连接嵌入。

D.信息融合

二部GCN,MGE层和跳过连接从三个角度揭示了潜在的信息。如何有效地合并这些不同的嵌入是非常重要的。在这项工作中,我们研究了三种方法

将单个嵌入项汇总为单个嵌入项向量:元素和连接,注意机制。这三种方法的具体操作见表一

我们对我们的模型进行了调整,允许小批量的三重态对{u,i,j}的正向和反向传播。更具体地说,我们从小批量对中选择唯一的用户和项目节点,经过信息融合得到低维嵌入{eu,ei,ej},并对广泛使用的bayesian个性化推荐(BPR)[26]损失进行随机梯度下降优化推荐模型。

论文地址:

https://arxiv.org/pdf/2001.00267.pdf

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值