大模型学习笔记 - LLM 参数高效微调技术

LLM 参数高效微调技术

参数高效微调是指冻结LLM的大部分模型参数,微调少量的或者额外新增的模型参数。目前高效微调技术主要由:Prefix Tuning、P-Tuning V1/V2、LoRA、QLoRA.

微调技术的发展:

adapter tuning -> prefix tuning ->P-Tuning v1/v2 -> LoRA -> QLoRA.

Adapter Tuning (2019 google,在Transformer 结构中嵌入adapter,tuning on BERT)

  • Parameter-Efficient Transfer Learning for NLP
  • 谷歌的研究人员于2019年在论文《Parameter-Efficient Transfer Learning for NLP》提出针对 BERT 的 PEFT 微调方式,拉开了 PEFT 研究的序幕。他们指出:在面对特定的下游任务时,如果进行 Full-fintuning(即预训练模型中的所有参数都进行微调),太过低效, 而如果采用固定预训练模型的某些层,只微调接近下游任务的那几层参数,又难以达到较好的效果. 于是设计了如下结构:

在这里插入图片描述

  • 如上图左侧所示,将其嵌入 Transformer 的结构里面,在训练时,固定住原来预训练模型的参数不变,只对新增的 Adapter 结构进行微调
  • 如上图右侧所示,同时为了保证训练的高效性(也就是尽可能少的引入更多参数),他们将 Adapt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值