LLM 参数高效微调技术
参数高效微调是指冻结LLM的大部分模型参数,微调少量的或者额外新增的模型参数。目前高效微调技术主要由:Prefix Tuning、P-Tuning V1/V2、LoRA、QLoRA.
微调技术的发展:
adapter tuning -> prefix tuning ->P-Tuning v1/v2 -> LoRA -> QLoRA.
Adapter Tuning (2019 google,在Transformer 结构中嵌入adapter,tuning on BERT)
- Parameter-Efficient Transfer Learning for NLP
- 谷歌的研究人员于2019年在论文《Parameter-Efficient Transfer Learning for NLP》提出针对 BERT 的 PEFT 微调方式,拉开了 PEFT 研究的序幕。他们指出:在面对特定的下游任务时,如果进行 Full-fintuning(即预训练模型中的所有参数都进行微调),太过低效, 而如果采用固定预训练模型的某些层,只微调接近下游任务的那几层参数,又难以达到较好的效果. 于是设计了如下结构:
- 如上图左侧所示,将其嵌入 Transformer 的结构里面,在训练时,固定住原来预训练模型的参数不变,只对新增的 Adapter 结构进行微调
- 如上图右侧所示,同时为了保证训练的高效性(也就是尽可能少的引入更多参数),他们将 Adapt