参数高效微调方法(Parameter-Efficient Fine-Tuning,PEFT)概述

本文介绍了参数高效微调,一种针对大模型设计的迁移学习方法,通过只微调部分参数来节省计算资源和存储空间。文章详细讲述了其分类,如选择性方法(如适配器)、添加性方法(如软提示词和LoRA)和重新参数化方法,并预告后续将深入探讨代表性方法如Adapterstuning、LoRA等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        参数高效微调是指通过在预训练模型上仅微调部分参数来实现微调的策略。相较于全量微调,该方法节省计算资源和时间,特别适用于数据量有限、资源有限的情况。它也算是一种迁移学习的方法,但是与传统的迁移学习方法不同的是,它是专门针对大模型设计的,通常会保持原有模型的参数不变,以某种方式添加少量新的参数,通过调整这些新的参数使模型适应特定任务,同时保留底层通用的语义表示。而传统的迁移学习方法一般要达到比较好的效果,都不得不调整一部分原有模型的参数。同时,在保存或移植模型时,PEFT只要维护添加的那些参数,而传统的迁移学习方法需要保存整个调整后的模型,当需要微调很多任务时,通过PEFT微调模型可以大幅节省存储空间。

        目前,参数高效微调因其调整的参数占比很小(小于10%甚至0.1%),所需运算资源少,在同时需要出来很多下游任务时,节省大量存储空间,在目的单一的较小的样本集里(小于预训练语料的10%),已逐渐成为主流的微调方法。近年来,参数高效微调发展迅速,已出现30种以上的参数高效微调方法,如所示,它们可以分为3大类:

  1. 选择性方法(selective):只微调原始LLM参数的子集。
  2. 添加性方法(additive):通过添加一些可训练的层或参数来调整基础模型。它又可以分为2个小类:
    1. 适配器(adapters):通过在基础模型中加入一些可调整参数的组件、模块来使模型适应下游任务。
    2. 软提示词(soft prompts):通过某种方式达到给输入加入提示词的效果,从而适应下游任务。
  3. 重新参数化方法(reparameterization-based):通过创建原始网络权重的新低秩转换来减少要训练的参数数量。

        参数高效微调方法这么多,后续文章将会介绍几种比较有代表性的参数高效微调方法,如:适配器微调(Adapters tuning)、LoRA、前缀微调(Prefix tuning)、提示词微调(Prompt tuning)、P-tuning等。

### Parameter-Efficient Fine-Tuning (PEFT) 的背景 Parameter-Efficient Fine-Tuning 是一种针对基础模型(Foundation Models)优化的技术,旨在通过仅调整一小部分参数来实现高效微调过程。这种方法不仅减少了计算资源的需求,还提高了训练效率[^1]。 在神经网络中,通常会应用正则化技术以防止过拟合并促进泛化能力。这些技术可以强制模型学习更小的权重参数,从而减少复杂度和潜在的风险。对于大规模的基础模型而言,Parameter-Efficient Fine-Tuning 方法进一步扩展了这一理念,专注于更新少量的关键参数而非整个模型的所有参数。 ### 如何获取 PEFT 论文 PDF? 为了下载有关 **Parameter-Efficient Fine-Tuning for Foundation Models** 的论文,可以通过以下几种方式: #### 1. 使用学术搜索引擎 利用 Google Scholar 或 Semantic Scholar 这样的平台输入关键词 “Parameter-Efficient Fine-Tuning”,即可找到相关研究文章及其链接。大多数情况下,可以直接访问免费版本或者通过机构权限下载全文[^2]。 #### 2. GitHub 和开源社区 许多研究人员会在其个人主页或 GitHub 上分享研究成果以及配套代码库。例如,在 awesome-LLM-resources 项目中可能包含了大量关于大语言模型(LLMs)及相关主题的资料汇总,其中包括 PEFT 技术的应用实例与理论解释。 以下是 Python 实现的一个简单示例,展示如何加载预定义适配器来进行高效微调: ```python from peft import get_peft_model, LoraConfig, TaskType # 定义 LoRA 配置 peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) model = ... # 加载基础模型 peft_model = get_peft_model(model, peft_config) ``` 此脚本片段展示了基于 Hugging Face 提供的 `peft` 库创建低秩适应层的过程,这是实现 parameter-efficient fine-tuning 常见的一种方法之一。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值