集成学习--XGB

目录

 

算法原理与损失函数

分裂节点算法

缺失值处理

优缺点

应用场景

Sklearn参数

参考


算法原理与损失函数

如果不考虑工程实现、解决问题上的一些差异,xgboost与gbdt比较大的不同就是目标函数的定义。首先明确下我们的目标,希望建立K个回归树,使得树群的预测值尽量接近真实值(准确率)而且有尽量大的泛化能力(更为本质的东西),从数学角度看这是一个泛函最优化,多目标,看下目标函数:

其中i表示第i个样本,l((y^i−yi)表示第i个样本的预测误差,误差越小越好,后面\sum_{k}\Omega f(k)表示树的复杂度的函数,越小复杂度越低,泛化能力越强,表达式为:

T表示叶子节点的个数,w表示节点的数值。

目标函数由两部分构成,第一部分用来衡量预测分数和真实分数的差距,另一部分则是正则化项。正则化项同样包含两部分,T表示叶子结点的个数,w表示叶子节点的分数。γ可以控制叶子结点的个数,λ可以控制叶子节点的分数不会过大,防止过拟合。

直观上看,目标要求预测误差尽量小,叶子节点尽量少,节点数值尽量不极端(这个怎么看,如果某个样本label数值为4,那么第一个回归树预测3,第二个预测为1;另外一组回归树,一个预测2,一个预测2,那么倾向后一种,为什么呢?前一种情况,第一棵树学的太多,太接近4,也就意味着有较大的过拟合的风险)

分裂节点算法

XGBoost利用贪婪算法,遍历所有特征的所有特征划分点,使用上式目标函数值作为评价函数。具体做法就是分裂后的目标函数值比单子叶子节点的目标函数的增益,同时为了限制树生长过深,还加了个阈值,只有当增益大于该阈值才进行分裂。

缺失值处理

  原始论文中关于缺失值的处理将其看与稀疏矩阵的处理一样。在寻找分裂点的时候,不会对该特征为缺失的样本进行遍历统计,只对该列特征值为非缺失的样本上对应的特征值进行遍历。在逻辑实现上,为了保证完备性,会分别处理将缺失该特征值的样本分配到左叶子结点和右叶子结点的两种情形,计算增益后选择增益大的方向进行分裂即可。可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率。如果在训练中没有缺失值而在预测中出现缺失,那么会自动将缺失值的划分方向放到右子树。

优缺点

优点:

  • xgBoosting对代价函数做了二阶Talor展开,引入了一阶导数和二阶导数;
  • 当样本存在缺失值是,xgBoosting能自动学习分裂方向;
  • xgBoosting的代价函数引入正则化项,控制了模型的复杂度,正则化项包含全部叶子节点的个数,每个叶子节点输出的score的L2模的平方和。正则项降低了模型的方差,防止模型过拟合;
  • xgBoosting在每次迭代之后,为叶子结点分配学习速率,降低每棵树的权重,减少每棵树的影响,为后面提供更好的学习空间;
  • 可并行的近似直方图算法,树结点在进行分裂时,需要计算每个节点的增益,若数据量较大,对所有节点的特征进行排序,遍历的得到最优分割点,这种贪心法异常耗时,这时引进近似直方图算法,用于生成高效的分割点,即用分裂后的某种值减去分裂前的某种值,获得增益,为了限制树的增长,引入阈值,当增益大于阈值时,进行分裂;

缺点:

  • xgBoosting采用预排序,在迭代之前,对结点的特征做预排序,遍历选择最优分割点,数据量大时,贪心法耗时;
  • xgBoosting采用level-wise生成决策树,同时分裂同一层的叶子,从而进行多线程优化,不容易过拟合,但很多叶子节点的分裂增益较低,没必要进行跟进一步的分裂,这就带来了不必要的开销。

应用场景

可以用于分类和回归问题。

Sklearn参数

  • eta [默认 0.3]

和 learning rate 参数类似。 通过减少每一步的权重,可以提高模型的稳定性。 典型值为 0.01-0.2。

  • min_child_weight [默认 1]

决定最小叶子节点样本权重和。XGBoost 的这个参数是最小样本权重的和,用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。但是如果这个值过高,会导致欠拟合。这个参数需要使用 CV 来调整。

  • max_depth [默认 6]

这个值为树的最大深度。这个值也是用来避免过拟合的。max_depth 越大,模型会学到更具体更局部的样本。需要使用 CV 函数来进行调优。 典型值:3-10

  • max_leaf_nodes

树上最大的节点或叶子的数量。 可以替代 max_depth 的作用。因为如果生成的是二叉树,一个深度为 n 的树最多生成 n2 个叶子。

  • gamma [默认 0]

在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma 指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。

  • max_delta_step[默认 0]

这参数限制每棵树权重改变的最大步长。如果这个参数的值为 0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。

  • subsample [默认 1]

这个参数控制对于每棵树,随机采样的比例。 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。 典型值:0.5-1

  • colsample_bytree [默认 1]

和 GBM 里面的 max_features 参数类似。用来控制每棵随机采样的列数的占比 (每一列是一个特征)。 典型值:0.5-1

  • colsample_bylevel [默认 1]

用来控制树的每一级的每一次分裂,对列数的采样的占比。

  • lambda [默认 1]

权重的 L2 正则化项。(和 Ridge regression 类似)。 这个参数是用来控制 XGBoost 的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。

  • alpha [默认 1]

权重的 L1 正则化项。(和 Lasso regression 类似)。 可以应用在很高维度的情况下,使得算法的速度更快。

  • scale_pos_weight [默认 1]

在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

参考

https://blog.csdn.net/github_38414650/article/details/76061893

https://www.cnblogs.com/Sugar-Chl/p/10168838.html

后续会有补充

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值