lim n → ∞ [ 1 1 + 1 2 + 1 3 + . . . + 1 n − 2 + 1 n − 1 + 1 n ] < lim n → ∞ [ 1 1 + 1 2 + 1 4 + 1 4 + 1 8 + 1 8 + 1 8 + 1 8 + . . . + n 2 × 1 n ] = lim n → ∞ [ 1 + 1 2 × n ] \lim_{n \to \infty}[ \frac {1}{1} + \frac {1}{2} +\frac {1}{3} + ... + \frac {1}{n-2}+ \frac {1}{n-1} +\frac {1}{n}] <\\ \lim_{n \to \infty}[ \frac {1}{1} + \frac {1}{2} +\frac {1}{4} + \frac {1}{4}+ \frac {1}{8} +\frac {1}{8}+ \frac {1}{8}+ \frac {1}{8} + ... + \frac{n}{2} \times \frac{1}{n}]= \\ \lim_{n \to \infty}[1+\frac{1}{2} \times n ] n→∞lim[11+21+31+...+n−21+n−11+n1]<n→∞lim[11+21+41+41+81+81+81+81+...+2n×n1]=n→∞lim[1+21×n]
即可证明,调和级数发散。