调和级数发散的证明

lim ⁡ n → ∞ [ 1 1 + 1 2 + 1 3 + . . . + 1 n − 2 + 1 n − 1 + 1 n ] < lim ⁡ n → ∞ [ 1 1 + 1 2 + 1 4 + 1 4 + 1 8 + 1 8 + 1 8 + 1 8 + . . . + n 2 × 1 n ] = lim ⁡ n → ∞ [ 1 + 1 2 × n ] \lim_{n \to \infty}[ \frac {1}{1} + \frac {1}{2} +\frac {1}{3} + ... + \frac {1}{n-2}+ \frac {1}{n-1} +\frac {1}{n}] <\\ \lim_{n \to \infty}[ \frac {1}{1} + \frac {1}{2} +\frac {1}{4} + \frac {1}{4}+ \frac {1}{8} +\frac {1}{8}+ \frac {1}{8}+ \frac {1}{8} + ... + \frac{n}{2} \times \frac{1}{n}]= \\ \lim_{n \to \infty}[1+\frac{1}{2} \times n ] nlim[11+21+31+...+n21+n11+n1]<nlim[11+21+41+41+81+81+81+81+...+2n×n1]=nlim[1+21×n]

即可证明,调和级数发散。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值