机器学习第二题之分类

一、单变量分类:

1、激活函数

利用激活函数实现分类。

2、代价函数

理解:y是真实值,而h(x)是预测值,所以,如果预测值等于真实值,那么损失就是0,而如果预测是1,真实是0,那么就证明预测及其不准确,所以损失就变成无穷大。

 

 

3、损失函数的梯度下降:

二、代码实现

准备:

 

 

决策边界

二、多变分类

 

其他差不多,多了以下几个步骤:

1、特征映射

def feature_mapping(x1, x2, power):
   data = {}
   for i in np.arange(power + 1):
      for j in np.arange(i + 1):
         data['F{}{}'.format(i - j, j)] = np.power(x1, i - j) * np.power(x2, j)
   return pd.DataFrame(data)

2、损失函数:

 

3、梯度下降

 

 

 

 

 

 

 

 

 

 

 

 

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值