斐波那契数列的矩阵幂解法

package day02;

public class 斐波那契数列 {
	/** 可以使用矩阵幂进行计算,时间复杂度可以降低到O(log(n))
	 */
	/**
	 * 思路:
	 * [F(n), F(n-1)] = [F(n-1), F(n-2)] * [[1, 1], [1, 0]] 
	 * 				  = [F(n-2), F(n-3)] * [[1, 1], [1, 0]]^2
	 * 				  = [F(1), F(0)] * [[1, 1], [1, 0]]^(n-1)
	 * F(1)=1,F(0)=0,所以现在要求的是矩阵[[1, 1], [1, 0]]的(n-1)次幂
	 */
	public static int Fibonacci(int n) {
		if(n == 0)
			return 0;
		if(n == 1)
			return 1;
		int[][] matrix = {{1, 1}, {1, 0}};
		int[][] powOfMatrix = PowOfMatrix(matrix, n-1);
		int res = powOfMatrix[0][0];
		return res;
	}
	//求matrix的k次幂,根据:matrix^k = (matrix^(k/2) * matrix^(k/2)) * matrix^(k%2)
	public static int[][] PowOfMatrix(int[][] matrix, int k){
		if(k == 0) {
			//返回单位矩阵
			int[][] res = new int[2][2];
			res[0][0] = res[1][1] = 1;
			res[0][1] = res[1][0] = 0;
			return res;
		}
		if(k == 1)
			return matrix;
		int[][] tmp1 = matrixByMatrix(PowOfMatrix(matrix, k/2), PowOfMatrix(matrix, k/2));
		int[][] tmp2 = PowOfMatrix(matrix, k%2);
		return matrixByMatrix(tmp1, tmp2); 
	}
	public static int[][] matrixByMatrix(int[][] matrix1, int[][] matrix2){
		//这里专门计算两个2*2的矩阵乘积
		int[][] res = new int[2][2];
		res[0][0] = matrix1[0][0]*matrix2[0][0] + matrix1[0][1]*matrix2[1][0];
		res[0][1] = matrix1[0][0]*matrix2[0][1] + matrix1[0][1]*matrix2[1][1];
		res[1][0] = matrix1[1][0]*matrix2[0][0] + matrix1[1][1]*matrix2[1][0];
		res[1][1] = matrix1[1][0]*matrix2[1][0] + matrix1[1][1]*matrix2[1][1];
		return res;
	}
	public static void main(String[] args) {
		for(int i=0;i<20;i++) {
			System.out.println(Fibonacci(i));
		}
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值