python换脸GIF动画制作

本文介绍了如何在Windows环境下利用Python3.6、OpenCV3.4和dlib19.9库,结合imageio库创建换脸GIF动画的过程。通过读取并处理相同大小的两张本地图片,展示变换效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在进行换脸操作时,经常需要进行变换过程的动画演示,把GIF文件制作过程和效果写出来,供大家参考。
软件:
win10
VistualStudio2017
python3.6
opencv3.4
dlib19.9
过程

  1. 构建一个空的图像集
  2. 把经过opencv处理后的过程图片不断添加进去(需要转换成RGB格式)
  3. 用imageio的mimsave(函数)完成GIF动画制作

    本例中直接读入两张本地图片(大小需相同)进行变换。

代码:

# -*- coding: utf-8 -*-

import cv2
import imageio
path='e:/python/dlib/'
img1=cv2.imread(path+'%s'%('g1.jpg'))
img2=cv2.imread(path+'%s'%('g2.jpg'))
buff=[]
k=<
### 关于Python实现人技术 #### 安装所需库 为了实现技术,需要安装特定的Python库。这可以通过`pip`工具完成: ```bash pip install opencv-python pip install dlib ``` 这些命令用于安装OpenCV和dlib两个重要的计算机视觉库[^2]。 #### 编写程序框架 下面是一个简单的Python脚本模板,展示了如何构建一个基本的人应用程序: ```python import cv2 import dlib from imutils import face_utils import numpy as np def align_faces(image, detector, predictor): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) rects = detector(gray, 1) faces = [] for rect in rects: shape = predictor(gray, rect) shape = face_utils.shape_to_np(shape) (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"] leftEyePts = shape[lStart:lEnd] rightEyePts = shape[rStart:rEnd] leftEyeCenter = leftEyePts.mean(axis=0).astype(int) rightEyeCenter = rightEyePts.mean(axis=0).astype(int) dY = rightEyeCenter[1] - leftEyeCenter[1] dX = rightEyeCenter[0] - leftEyeCenter[0] angle = np.degrees(np.arctan2(dY, dX)) - 180 desiredLeftEye=(0.35, 0.35) desiredFaceWidth = image.shape[1] desiredFaceHeight = image.shape[0] eyesCenter = ((leftEyeCenter[0]+rightEyeCenter[0])//2, (leftEyeCenter[1]+rightEyeCenter[1])//2) M = cv2.getRotationMatrix2D(eyesCenter,angle, scale=1.0) rotated = cv2.warpAffine(image,M,(desiredFaceWidth,desiredFaceHeight)) faces.append(rotated) return faces if len(faces)>0 else None detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') imageA = cv2.imread('faceA.jpg') imageB = cv2.imread('faceB.jpg') alignedFaces = [] for img in [imageA,imageB]: alignedImg = align_faces(img,detector,predictor)[0] alignedFaces.append(alignedImg) # 假设已经实现了swap函数来进行实际的部替操作 swappedImage = swap(alignedFaces[0], alignedFaces[1]) cv2.imshow("Swapped Face", swappedImage) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码首先定义了一个名为`align_faces()`的功能函数,该函数接收输入片以及检测器和预测器对象作为参数,并返回经过校准后的像列表。接着初始化了面部探测器(`detector`)和形状预测器(`predictor`)实例。随后读取两张待处理的照片并调用上述方法获取对齐后的人数据。最后假设有现成的方法可以执行具体的逻辑,在此仅展示界面显示部分的结果。 请注意,这里假设存在一个未给出具体实现细节的`swap()`功能负责真正的过程;此外还需要提前准备好预训练好的模型文件如`shape_predictor_68_face_landmarks.dat`以便能够正确识别面部特征点位置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值