DQN变体:Prioritized Replay DQN

这篇文章主要讲解Prioritized Replay DQN

主要解决问题

之前的DQN算法系列有个问题,每一次从经验回放集合里面抽取数据,每一个数据都是有相同的概率被抽取。这是有问题的,这也是导致收敛速度变慢的原因之一,我们应该着重关注TD误差绝对值比较大的数据,而不是那些效果已经比较好的数据。

算法基础讲解

还记得之前的损失函数是:
1 m ∑ j = 1 m ( y j − Q ( ϕ ( S j ) , A j , w ) ) 2 \frac{1}{m}\sum\limits_{j=1}^m(y_j-Q(\phi(S_j),A_j,w))^2 m1j=1m(yjQ(ϕ(Sj),Aj,w))2
TD误差也由此而来,公式如下:
δ j = y j − Q ( ϕ ( S j ) , A j , w ) \delta_j = y_j- Q(\phi(S_j),A_j,w) δj=yjQ(ϕ(Sj),Aj,w),然后经验数据的优先级为 p j = ∣ δ j ∣ p_j = |\delta_j| pj=δj p j p_j pj越大被抽中的概率也就越大。

由此我们储存数据的方式也不能像之前一样,用简单的集合。而是一个叫suntree的数据结构。
sumtree解释
因为我们需要对数据进行优先级的比较, p j p_j pj越大被抽中的概率也就越大。这里把优先级大小当成是一个区间的大小,在这个区间内进行采样。举个栗子:
有三个数据分别是data1,data2,data3,它们的优先集分别是1,4,8。这里就相当于1,4,8三个区间,总区间长度为13。在[1,13]内采样(随机选一个数字),这里假设采一个样本。data1在[1]区间内,data2在[2,5],data3在[6,13];抽到那个区间就是那个数据。好了让我们来看下面这幅图:
在这里插入图片描述
上面这副图就是sumtree的整体结构,内部节点不是数据,只有叶子节点才是数据。这里面一共有8个叶子节点(数据),圈内的数字代表它们的优先级大小。下面的(0-3)的东西代表的是它所占区间大小(优先级大小),明显的12的叶子节点最大。每一个节点的数值都是它的子节点之和。所以也可以很清楚的看到总的区间大小为42,也就是说我们需要从[0,42]中选一个数。
如上图,我们选一个数字24很明显在左边那个29的数字之内[0,29],所以去往左边(数字可以理解为区间大小,左叶子节点为左区间,右叶子节点为右区间),然后来到29数字,左边为[0,13]区间,右边为[13,29];跟左边比,29大于13不在左区间,去往右区间,同时应该注意,此时24应该减去13等于11也就是此时在右区间的相对位置(或者也可以表示相对区间大小)。然后接下来到了16,和上面一样比较11<12,在左区间,进入12叶子节点。就选择该数据。
然后以下是sumtree的实现,感受下:

class SumTree(object):
    """
    This SumTree code is a modified version and the original code is from:
    https://github.com/jaara/AI-blog/blob/master/SumTree.py
    Story data with its priority in the tree.
    """
    data_pointer = 0

    def __init__(self, capacity):
        self.capacity = capacity  # for all priority values
        self.tree = np.zeros(2 * capacity - 1)
        # [--------------Parent nodes-------------][-------leaves to recode priority-------]
        #             size: capacity - 1                       size: capacity
        self.data = np.zeros(capacity, dtype=object)  # for all transitions
        # [--------------data frame-------------]
        #             size: capacity

    def add(self, p, data):
        tree_idx = self.data_pointer + self.capacity - 1
        self.data[self.data_pointer] = data  # update data_frame
        self.update(tree_idx, p)  # update tree_frame

        self.data_pointer += 1
        if self.data_pointer >= self.capacity:  # replace when exceed the capacity
            self.data_pointer = 0

    def update(self, tree_idx, p):
        change = p - self.tree[tree_idx]
        self.tree[tree_idx] = p
        # then propagate the change through tree
        while tree_idx != 0:    # this method is faster than the recursive loop in the reference code
            tree_idx = (tree_idx - 1) // 2
            self.tree[tree_idx] += change

    def get_leaf(self, v):
        """
        Tree structure and array storage:
        Tree index:
             0         -> storing priority sum
            / \
          1     2
         / \   / \
        3   4 5   6    -> storing priority for transitions
        Array type for storing:
        [0,1,2,3,4,5,6]
        """
        parent_idx = 0
        while True:     # the while loop is faster than the method in the reference code
            cl_idx = 2 * parent_idx + 1         # this leaf's left and right kids
            cr_idx = cl_idx + 1
            if cl_idx >= len(self.tree):        # reach bottom, end search
                leaf_idx = parent_idx
                break
            else:       # downward search, always search for a higher priority node
                if v <= self.tree[cl_idx]:
                    parent_idx = cl_idx
                else:
                    v -= self.tree[cl_idx]
                    parent_idx = cr_idx

        data_idx = leaf_idx - self.capacity + 1
        return leaf_idx, self.tree[leaf_idx], self.data[data_idx]

    @property
    def total_p(self):
        return self.tree[0]  # the root

思路还是蛮简单的,讲完这个接下来,还要讲损失函数的优化,之前我们Q网络的损失函数是 1 m ∑ j = 1 m ( y j − Q ( ϕ ( S j ) , A j , w ) ) 2 \frac{1}{m}\sum\limits_{j=1}^m(y_j-Q(\phi(S_j),A_j,w))^2 m1j=1m(yjQ(ϕ(Sj),Aj,w))2,做一个小小的改变根据数据的优先级做一点变动,损失函数变为:
1 m ∑ j = 1 m w j ( y j − Q ( ϕ ( S j ) , A j , w ) ) 2 \frac{1}{m}\sum\limits_{j=1}^mw_j(y_j-Q(\phi(S_j),A_j,w))^2 m1j=1mwj(yjQ(ϕ(Sj),Aj,w))2
多了一个 w j w_j wj由优先级 p j p_j pj得到,公式如下:
P ( j ) = p j ∑ i ( p i ) P(j) = \frac{p_j}{\sum\limits_i(p_i)} P(j)=i(pi)pj
w j = ( N ∗ P ( j ) ) − β / max ⁡ i ( w i ) w_j = (N*P(j))^{-\beta}/\max_i(w_i) wj=(NP(j))β/maxi(wi)
采样权重系数 β β β自己设置。
另外计算方式可以是这样:
w j = ( N ∗ P ( j ) ) − β max ⁡ i ( w i ) = ( N ∗ P ( j ) ) − β max ⁡ i ( ( N ∗ P ( i ) ) − β ) = ( P ( j ) ) − β max ⁡ i ( ( P ( i ) ) − β ) = ( p j min ⁡ i P ( i ) ) − β w_j = \frac{ (N*P(j))^{-\beta}}{\max_i(w_i)} = \frac{ (N*P(j))^{-\beta}}{\max_i((N*P(i))^{-\beta})} = \frac{ (P(j))^{-\beta}}{\max_i((P(i))^{-\beta})} =( \frac{p_j}{\min_iP(i)})^{-\beta} wj=maxi(wi)(NP(j))β=maxi((NP(i))β)(NP(j))β=maxi((P(i))β)(P(j))β=(miniP(i)pj)β

算法流程

算法输入:迭代轮数 T T T,状态特征维度 n n n, 动作集 A A A, 步长 α α α,采样权重系数 β β β,衰减因子 γ γ γ, 探索率 ϵ ϵ ϵ, 当前 Q Q Q网络 Q Q Q,目标 Q Q Q网络 Q ′ Q^′ Q, 批量梯度下降的样本数 m m m,目标 Q Q Q网络参数更新频率 C C C, SumTree的叶子节点数 S S S

输出: Q Q Q网络参数。

1. 随机初始化所有的状态和动作对应的价值 Q Q Q. 随机初始化当前 Q Q Q网络的所有参数 w w w,初始化目标 Q Q Q网络 Q ′ Q^′ Q的参数 w ′ = w w^′=w w=w。初始化经验回放SumTree的默认数据结构,所有SumTree的 S S S个叶子节点的优先级 p j pj pj为1。

2. for i from 1 to T,进行迭代。

a) 初始化 S S S为当前状态序列的第一个状态, 拿到其特征向量 ϕ ( S ) ϕ(S) ϕ(S)
      b) 在 Q Q Q网络中使用 ϕ ( S ) ϕ(S) ϕ(S)作为输入,得到 Q Q Q网络的所有动作对应的 Q Q Q值输出。用 ϵ ϵ ϵ−贪婪法在当前 Q Q Q值输出中选择对应的动作 A A A
      c) 在状态 S S S执行当前动作 A A A,得到新状态 S ′ S^′ S对应的特征向量 ϕ ( S ′ ) ϕ(S^′) ϕ(S)和奖励 R R R,是否终止状态is_end

d) 将 ϕ ( S ) , A , R , ϕ ( S ′ ) , i s e n d {ϕ(S),A,R,ϕ(S^′),is_end} ϕ(S),A,R,ϕ(S),isend这个五元组存入SumTree

e) S = S ′ S=S^′ S=S
      f) 从SumTree中采样m个样本 ϕ ( S j ) , A j , R j , ϕ ( S j ′ ) , i s e n d j , j = 1 , 2. , , , m {ϕ(Sj),Aj,Rj,ϕ(S^′_j),is_endj},j=1,2.,,,m ϕ(Sj),Aj,Rj,ϕ(Sj),isendj,j=1,2.,,,m,每个样本被采样的概率基于 P ( j ) = p j ∑ i ( p i ) P(j) = \frac{p_j}{\sum\limits_i(p_i)} P(j)=i(pi)pj,损失函数权重 w j = ( N ∗ P ( j ) ) − β / max ⁡ i ( w i ) w_j = (N*P(j))^{-\beta}/\max_i(w_i) wj=(NP(j))β/maxi(wi),计算当前目标 Q Q Q y j y_j yj
y j = { R j i s _ e n d j    i s    t r u e R j + γ Q ′ ( ϕ ( S j ′ ) , arg ⁡ max ⁡ a ′ Q ( ϕ ( S j ′ ) , a , w ) , w ′ ) i s _ e n d j    i s    f a l s e y_j= \begin{cases} R_j& {is\_end_j\; is \;true}\\ R_j + \gamma Q'(\phi(S'_j),\arg\max_{a'}Q(\phi(S'_j),a,w),w')& {is\_end_j\; is \;false} \end{cases} yj={RjRj+γQ(ϕ(Sj),argmaxaQ(ϕ(Sj),a,w),w)is_endjistrueis_endjisfalse
      g) 使用均方差损失函数 1 m ∑ j = 1 m w j ( y j − Q ( ϕ ( S j ) , A j , w ) ) 2 \frac{1}{m}\sum\limits_{j=1}^mw_j(y_j-Q(\phi(S_j),A_j,w))^2 m1j=1mwj(yjQ(ϕ(Sj),Aj,w))2,通过神经网络的梯度反向传播来更新 Q Q Q网络的所有参数w
      h) 重新计算所有样本的TD误差 δ j = y j − Q ( ϕ ( S j ) , A j , w ) \delta_j = y_j- Q(\phi(S_j),A_j,w) δj=yjQ(ϕ(Sj),Aj,w),更新SumTree中所有节点的优先级 p j = ∣ δ j ∣ pj=|δj| pj=δj
      i) 如果T%C=1,则更新目标Q网络参数 w ′ = w w^′=w w=w
      j) 如果 S ′ S^′ S是终止状态,当前轮迭代完毕,否则转到步骤b)

代码

接下来,参考Tensorflow代码写的pytorch:

# -*- coding: utf-8 -*-
"""
Created on Fri Dec  6 15:46:28 2019

@author: asus
"""

import gym
import torch
import torch.nn.functional as F
import numpy as np
import random

GAMMA = 0.9
INITIAL_EPSILON = 0.5
FINAL_EPSILON = 0.01
REPLAY_SIZE = 10000
BATCH_SIZE = 32
ENV_NAME = 'CartPole-v0'
EPISODE = 3000 # Episode limitation
STEP = 300 # Step limitation in an episode
TEST = 10 # The number of experiment test every 100 episode

class SumTree(object):
    """
    This SumTree code is a modified version and the original code is from:
    https://github.com/jaara/AI-blog/blob/master/SumTree.py
    Story data with its priority in the tree.
    """
    data_pointer = 0

    def __init__(self, capacity):
        self.capacity = capacity  # for all priority values
        self.tree = np.zeros(2 * capacity - 1)
        # [--------------Parent nodes-------------][-------leaves to recode priority-------]
        #             size: capacity - 1                       size: capacity
        self.data = np.zeros(capacity, dtype=object)  # for all transitions
        # [--------------data frame-------------]
        #             size: capacity

    def add(self, p, data):
        tree_idx = self.data_pointer + self.capacity - 1
        self.data[self.data_pointer] = data  # update data_frame
        self.update(tree_idx, p)  # update tree_frame

        self.data_pointer += 1
        if self.data_pointer >= self.capacity:  # replace when exceed the capacity
            self.data_pointer = 0

    def update(self, tree_idx, p):
        change = p - self.tree[tree_idx]
        self.tree[tree_idx] = p
        # then propagate the change through tree
        while tree_idx != 0:    # this method is faster than the recursive loop in the reference code
            tree_idx = (tree_idx - 1) // 2
            self.tree[tree_idx] += change

    def get_leaf(self, v):
        """
        Tree structure and array storage:
        Tree index:
             0         -> storing priority sum
            / \
          1     2
         / \   / \
        3   4 5   6    -> storing priority for transitions
        Array type for storing:
        [0,1,2,3,4,5,6]
        """
        parent_idx = 0
        while True:     # the while loop is faster than the method in the reference code
            cl_idx = 2 * parent_idx + 1         # this leaf's left and right kids
            cr_idx = cl_idx + 1
            if cl_idx >= len(self.tree):        # reach bottom, end search
                leaf_idx = parent_idx
                break
            else:       # downward search, always search for a higher priority node
                if v <= self.tree[cl_idx]:
                    parent_idx = cl_idx
                else:
                    v -= self.tree[cl_idx]
                    parent_idx = cr_idx

        data_idx = leaf_idx - self.capacity + 1
        return leaf_idx, self.tree[leaf_idx], self.data[data_idx]

    @property
    def total_p(self):
        return self.tree[0]  # the root


class Memory(object):  # stored as ( s, a, r, s_ ) in SumTree
    """
    This Memory class is modified based on the original code from:
    https://github.com/jaara/AI-blog/blob/master/Seaquest-DDQN-PER.py
    """
    epsilon = 0.01  # small amount to avoid zero priority
    alpha = 0.6  # [0~1] convert the importance of TD error to priority
    beta = 0.4  # importance-sampling, from initial value increasing to 1
    beta_increment_per_sampling = 0.001
    abs_err_upper = 1.  # clipped abs error

    def __init__(self, capacity):
        self.tree = SumTree(capacity)

    def store(self, transition):
        max_p = np.max(self.tree.tree[-self.tree.capacity:])
        if max_p == 0:
            max_p = self.abs_err_upper
        self.tree.add(max_p, transition)   # set the max p for new p

    def sample(self, n):
        b_idx, b_memory, ISWeights = np.empty((n,), dtype=np.int32), np.empty((n, self.tree.data[0].size)), np.empty((n, 1))
        pri_seg = self.tree.total_p / n       # priority segment 均匀区间
        #belta不断变大
        self.beta = np.min([1., self.beta + self.beta_increment_per_sampling])  # max = 1
        #最小概率
        min_prob = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.total_p     # for later calculate ISweight
        if min_prob == 0:
            min_prob = 0.00001
        for i in range(n):
            a, b = pri_seg * i, pri_seg * (i + 1)
            #取均匀分布
            v = np.random.uniform(a, b)
            #p为误差
            idx, p, data = self.tree.get_leaf(v)
            prob = p / self.tree.total_p
            ISWeights[i, 0] = np.power(prob/min_prob, -self.beta)
            b_idx[i], b_memory[i, :] = idx, data
        return b_idx, b_memory, ISWeights

    def batch_update(self, tree_idx, abs_errors):
        abs_errors += self.epsilon  # convert to abs and avoid 0

        clipped_errors = np.minimum(abs_errors.detach().numpy(), self.abs_err_upper)
        ps = np.power(clipped_errors, self.alpha)
        for ti, p in zip(tree_idx, ps):
            self.tree.update(ti, p)

class MODEL(torch.nn.Module):
    def __init__(self, env):
        super(MODEL, self).__init__()
        self.state_dim = env.observation_space.shape[0]
        self.action_dim = env.action_space.n
        self.fc1 = torch.nn.Linear(self.state_dim, 20)
        self.fc1.weight.data.normal_(0, 0.6)
        self.fc2 = torch.nn.Linear(20, self.action_dim)
        
    def create_Q_network(self, x):
        x = F.relu(self.fc1(x))
        Q_value = self.fc2(x)
        return Q_value
    
    def forward(self, x, action_input):
        Q_value = self.create_Q_network(x)
        Q_action = torch.mul(Q_value, action_input).sum(dim=1)
        return Q_action
    
class DQN():
    def __init__(self, env):
        self.replay_total = 0
        self.target_Q_net = MODEL(env)
        self.current_Q_net = MODEL(env)
        self.memory = Memory(capacity=REPLAY_SIZE)
        self.time_step = 0
        self.epsilon = INITIAL_EPSILON
        self.optimizer = torch.optim.Adam(params=self.current_Q_net.parameters(), lr=0.0001)
#        self.loss = torch.nn.MSELoss()
    
    def store_transition(self, s, a, r, s_, done):
        transition = np.hstack((s, a, r, s_, done))
        self.memory.store(transition)
    
    def perceive(self,state,action,reward,next_state,done):
        one_hot_action = np.zeros(self.current_Q_net.action_dim)
        one_hot_action[action] = 1
        self.store_transition(state,one_hot_action,reward,next_state,done)
        self.replay_total += 1
        if self.replay_total > BATCH_SIZE:
            self.train_Q_network()
    
    def train_Q_network(self):
        self.time_step += 1
        # Step 1: obtain random minibatch from replay memory
        tree_idx, minibatch, ISWeights = self.memory.sample(BATCH_SIZE)
        
        state_batch = torch.tensor(minibatch[:,0:4], dtype=torch.float32)
        action_batch =  torch.tensor(minibatch[:,4:6], dtype=torch.float32)
        reward_batch = [data[6] for data in minibatch]
        next_state_batch = torch.tensor(minibatch[:,7:11], dtype=torch.float32)

        # Step 2: calculate y
        y_batch = []
        
        current_a = self.current_Q_net.create_Q_network(next_state_batch)
        max_current_action_batch = torch.argmax(current_a, axis=1)

        Q_value_batch = self.target_Q_net.create_Q_network(next_state_batch)
        
        for i in range(0,BATCH_SIZE):
            done = minibatch[i][11]
            if done:
                y_batch.append(reward_batch[i])
            else:
                max_current_action = max_current_action_batch[i]
                y_batch.append(reward_batch[i] + GAMMA * Q_value_batch[i,max_current_action])
                
        y = self.current_Q_net(torch.FloatTensor(state_batch), torch.FloatTensor(action_batch))
        y_batch = torch.FloatTensor(y_batch)
        cost = self.loss(y, y_batch, torch.tensor(ISWeights))
        self.optimizer.zero_grad()
        cost.backward()
        self.optimizer.step()
        y = self.current_Q_net(torch.FloatTensor(state_batch), torch.FloatTensor(action_batch))
        abs_errors = torch.abs(y_batch - y)
        self.memory.batch_update(tree_idx, abs_errors)
        
    def egreedy_action(self,state):
        Q_value = self.current_Q_net.create_Q_network(torch.FloatTensor(state))
        if random.random() <= self.epsilon:
            self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000
            return random.randint(0, self.current_Q_net.action_dim - 1)
        else:
            self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000
            return torch.argmax(Q_value).item()     
                
    def action(self,state):
        return torch.argmax(self.target_Q_net.create_Q_network(torch.FloatTensor(state))).item()
               
    def update_target_params(self):
        torch.save(self.current_Q_net.state_dict(), 'net_params.pkl')
        self.target_Q_net.load_state_dict(torch.load('net_params.pkl'))
    
    def loss(self, y_output, y_true, ISWeights):
        value = y_output - y_true
        return torch.mean(value*value*ISWeights)
    
def main():
  # initialize OpenAI Gym env and dqn agent
  env = gym.make(ENV_NAME)
  agent = DQN(env)

  for episode in range(EPISODE):
    # initialize task
    state = env.reset()
    # Train
    for step in range(STEP):
    
      action = agent.egreedy_action(state) # e-greedy action for train
      next_state,reward,done,_ = env.step(action)
      # Define reward for agent
      reward = -1 if done else 0.1
      agent.perceive(state,action,reward,next_state,done)
      state = next_state
      if done:
        break
    # Test every 100 episodes
    if episode % 100== 0:
      total_reward = 0
      for i in range(TEST):
        state = env.reset()
        for j in range(STEP):
#          env.render()
          action = agent.action(state) # direct action for test
          state,reward,done,_ = env.step(action)
          total_reward += reward
          if done:
            break
      ave_reward = total_reward/TEST
      print ('episode: ',episode,'Evaluation Average Reward:',ave_reward)
    agent.update_target_params()
if __name__ == '__main__':
  main()

参考文献:https://www.cnblogs.com/pinard/p/9797695.html

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值