深度学习推荐系统02

深度学习推荐系统02

这个周末没有学习,原因是去找租的房子了;自从去年蛋壳暴雷再到现在的找房租房,真的是有些心力交瘁,不过好在一切都过去了;我现在可以正式说了,今年的目标是80kg;好,废话少说,下面进入正题!

1.背景介绍

随着CTR预估任务的发展,我们发现增加组合特征往往可以增加模型预测的准确度;比如一个买了牙刷他接下来可能会继续去买一个牙膏,在增加组合特征往往需要工程师手动构建,这样往往会耗费很大的时间和经历,于是可以自动生产组合特征的wide and deep模型应运而生。
源码地址

2.模型结构及原理

wide&deep模型结构图如下所示:
在这里插入图片描述
模型主要分为两个部分,wide部分与deep部分,其中两部的都有构建交叉的能力,不过两部分的侧重点有所不同。
wide部分是一个广义的线性模型,输入的特征主要有两部分组成,一部分是原始的部分特征,另一部分是原始特征的交叉特征(cross-product transformation),对于交互特征可以定义为::
ϕ k ( x ) = ∏ i = 1 d x i c k i , c k i ∈ { 0 , 1 } \phi_{k}(x)=\prod_{i=1}^d x_i^{c_{ki}}, c_{ki}\in \{0,1\} ϕk(x)=i=1dxicki,cki{0,1}

c k i c_{ki} cki是一个布尔变量,当第i个特征属于第k个特征组合时, c k i c_{ki} cki的值为1,否则为0, x i x_i xi是第i个特征的值,大体意思就是两个特征都同时为1这个新的特征才能为1,否则就是0,说白了就是一个特征组合。

  • Wide部分模型训练完之后留下来的特征都是非常重要的,那么模型的“记忆能力”就可以理解为发现"直接的",“暴力的”,“显然的”关联规则的能力。例如Google W&D期望wide部分发现这样的规则:用户安装了应用A,此时曝光应用B,用户安装应用B的概率大。

  • Deep部分是一个DNN模型,输入的特征主要分为两大类,一类是数值特征(可直接输入DNN),一类是类别特征(需要经过Embedding之后才能输入到DNN中),Deep部分的数学形式如下:
    a ( l + 1 ) = f ( W l a ( l ) + b l ) a^{(l+1)} = f(W^{l}a^{(l)} + b^{l}) a(l+1)=f(Wla(l)+bl)
    我们知道DNN模型随着层数的增加,中间的特征就越抽象,也就提高了模型的泛化能力。对于Deep部分的DNN模型作者使用了深度学习常用的优化器AdaGrad,这也是为了使得模型可以得到更精确的解。

3.代码实现

数据加载和处理部分与上一篇博客介绍的deep cross相同,可参见上篇博客
wide&deep主体实现

# Wide&Deep 模型的wide部分及Deep部分的特征选择,应该根据实际的业务场景去确定哪些特征应该放在Wide部分,哪些特征应该放在Deep部分
def WideNDeep(linear_feature_columns, dnn_feature_columns):
    # 构建输入层,即所有特征对应的Input()层,这里使用字典的形式返回,方便后续构建模型
    dense_input_dict, sparse_input_dict = build_input_layers(linear_feature_columns + dnn_feature_columns)

    # 将linear部分的特征中sparse特征筛选出来,后面用来做1维的embedding
    linear_sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), linear_feature_columns))

    # 构建模型的输入层,模型的输入层不能是字典的形式,应该将字典的形式转换成列表的形式
    # 注意:这里实际的输入与Input()层的对应,是通过模型输入时候的字典数据的key与对应name的Input层
    input_layers = list(dense_input_dict.values()) + list(sparse_input_dict.values())

    # Wide&Deep模型论文中Wide部分使用的特征比较简单,并且得到的特征非常的稀疏,所以使用了FTRL优化Wide部分(这里没有实现FTRL)
    # 但是是根据他们业务进行选择的,我们这里将所有可能用到的特征都输入到Wide部分,具体的细节可以根据需求进行修改
    linear_logits = get_linear_logits(dense_input_dict, sparse_input_dict, linear_sparse_feature_columns)
    
    # 构建维度为k的embedding层,这里使用字典的形式返回,方便后面搭建模型
    embedding_layers = build_embedding_layers(dnn_feature_columns, sparse_input_dict, is_linear=False)

    dnn_sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), dnn_feature_columns))

    # 在Wide&Deep模型中,deep部分的输入是将dense特征和embedding特征拼在一起输入到dnn中
    dnn_logits = get_dnn_logits(dense_input_dict, sparse_input_dict, dnn_sparse_feature_columns, embedding_layers)
    
    # 将linear,dnn的logits相加作为最终的logits
    output_logits = Add()([linear_logits, dnn_logits])

    # 这里的激活函数使用sigmoid
    output_layer = Activation("sigmoid")(output_logits)

    model = Model(input_layers, output_layer)
    return model

构建逻辑回归函数

def get_linear_logits(dense_input_dict, sparse_input_dict, sparse_feature_columns):
    # 将所有的dense特征的Input层,然后经过一个全连接层得到dense特征的logits
    concat_dense_inputs = Concatenate(axis=1)(list(dense_input_dict.values()))
    dense_logits_output = Dense(1)(concat_dense_inputs)
    
    # 获取linear部分sparse特征的embedding层,这里使用embedding的原因是:
    # 对于linear部分直接将特征进行onehot然后通过一个全连接层,当维度特别大的时候,计算比较慢
    # 使用embedding层的好处就是可以通过查表的方式获取到哪些非零的元素对应的权重,然后在将这些权重相加,效率比较高
    linear_embedding_layers = build_embedding_layers(sparse_feature_columns, sparse_input_dict, is_linear=True)
    
    # 将一维的embedding拼接,注意这里需要使用一个Flatten层,使维度对应
    sparse_1d_embed = []
    for fc in sparse_feature_columns:
        feat_input = sparse_input_dict[fc.name]
        embed = Flatten()(linear_embedding_layers[fc.name](feat_input)) # B x 1
        sparse_1d_embed.append(embed)

    # embedding中查询得到的权重就是对应onehot向量中一个位置的权重,所以后面不用再接一个全连接了,本身一维的embedding就相当于全连接
    # 只不过是这里的输入特征只有0和1,所以直接向非零元素对应的权重相加就等同于进行了全连接操作(非零元素部分乘的是1)
    sparse_logits_output = Add()(sparse_1d_embed)

    # 最终将dense特征和sparse特征对应的logits相加,得到最终linear的logits
    linear_logits = Add()([dense_logits_output, sparse_logits_output])
    return linear_logits

构建DNN函数

def get_dnn_logits(dense_input_dict, sparse_input_dict, sparse_feature_columns, dnn_embedding_layers):
    concat_dense_inputs = Concatenate(axis=1)(list(dense_input_dict.values())) # B x n1 (n表示的是dense特征的维度) 

    sparse_kd_embed = concat_embedding_list(sparse_feature_columns, sparse_input_dict, dnn_embedding_layers, flatten=True)

    concat_sparse_kd_embed = Concatenate(axis=1)(sparse_kd_embed) # B x n2k  (n2表示的是Sparse特征的维度)

    dnn_input = Concatenate(axis=1)([concat_dense_inputs, concat_sparse_kd_embed]) # B x (n2k + n1)

    # dnn层,这里的Dropout参数,Dense中的参数及Dense的层数都可以自己设定
    dnn_out = Dropout(0.5)(Dense(1024, activation='relu')(dnn_input))  
    dnn_out = Dropout(0.3)(Dense(512, activation='relu')(dnn_out))
    dnn_out = Dropout(0.1)(Dense(256, activation='relu')(dnn_out))

    dnn_logits = Dense(1)(dnn_out)

    return dnn_logits

主函数调用顺序

if __name__ == "__main__":
    # 读取数据
    data = pd.read_csv('./data/criteo_sample.txt')

    # 划分dense和sparse特征
    columns = data.columns.values
    dense_features = [feat for feat in columns if 'I' in feat]
    sparse_features = [feat for feat in columns if 'C' in feat]

    # 简单的数据预处理
    train_data = data_process(data, dense_features, sparse_features)
    train_data['label'] = data['label']

    # 将特征分组,分成linear部分和dnn部分(根据实际场景进行选择),并将分组之后的特征做标记(使用DenseFeat, SparseFeat)
    linear_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4)
                            for i,feat in enumerate(sparse_features)] + [DenseFeat(feat, 1,)
                            for feat in dense_features]

    dnn_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4)
                            for i,feat in enumerate(sparse_features)] + [DenseFeat(feat, 1,)
                            for feat in dense_features]

    # 构建WideNDeep模型
    history = WideNDeep(linear_feature_columns, dnn_feature_columns)
    history.summary()
    history.compile(optimizer="adam", 
                loss="binary_crossentropy", 
                metrics=["binary_crossentropy", tf.keras.metrics.AUC(name='auc')])

    # 将输入数据转化成字典的形式输入
    train_model_input = {name: data[name] for name in dense_features + sparse_features}
    # 模型训练
    history.fit(train_model_input, train_data['label'].values,
            batch_size=64, epochs=5, validation_split=0.2, )

导包语句

import warnings
warnings.filterwarnings("ignore")
import itertools
import pandas as pd
import numpy as np
from tqdm import tqdm
from collections import namedtuple

import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import *

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import  MinMaxScaler, LabelEncoder

from utils import SparseFeat, DenseFeat, VarLenSparseFeat
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值