LSTM梳理、理解和Keras实现

一、RNN
这里写图片描述

LSTM适合时序序列、变长序列、尤其适合自然语言处理。从上图左边来看,RNN有两个输入,一个是当前 t 时刻的输入xt,另一个就是看似“本身的输入”。从上图右边来看,实际上就是左图的在一个时间序列上的展开,上一时刻的输出是这一时刻的输入,值得注意的是,实际上,右图上的所有神经元是同一个神经元,也就是左图,它们共享同样的权值,只不过在不同的时刻接受不同的输入,再把输出给下一时刻作为输入,这就是存储过去的信息。
输入:
形如(samples,timesteps,input_dim)的3D张量。
输出
如果return_sequences=True,返回形如(samples,timesteps,output_dim)的3D张量,否则返回形如(samples,timesteps,output_dim)的2D张量。

输入是一个三维向量。samples即为数据的条数。难以理解的是timesteps 和input_dim. Input_dim是数据的表示形式的维度,timestep则为总的时间步数。例如这样一个数据,总共100条句子,每个句子20个词,每个词都由一个80维的向量表示。在RNN中,每一个timestep的输入是一个词(当然这不一定,你也可以调成两个词或者其他),从第一张RNN的图来看,t0时刻是第一个时间步,x0则为代表一条句子中第一个词的80维向量,t1是第二个时间步,x1表示句子中第二个词的80维向量。。。所以,输入数据的大小应当是(100, 20, 80)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值