keras之lstm

1、预测sin函数

import numpy as np
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras import optimizers
from keras.utils import np_utils

TIMESTEP = 10
HIDDEN_UNITS = 100
BATCH_SIZE = 10
EPOCH = 10

model_store = 'model\lstm_sin_model.h5'


# 数据可视化
def draw(data1, data2):
    ax = plt.subplot(111)
    ax.plot(list(range(len(data1))), data1, 'b-', list(range(len(data1), len(data1) + len(data2))), data2, 'r-')
    plt.show()


# 获取数据
def get_data():
    x = np.linspace(start=0, stop=50, num=200, endpoint=False)
    y = np.sin(x)
    X = []
    Y = []
    for i in range(y.shape[0] - TIMESTEP - 1):
        X.append(y[i:i + TIMESTEP])
        Y.append(y[i + TIMESTEP])
    X = np.array(X).reshape(-1, TIMESTEP, 1)
    Y = np.array(Y).reshape(-1, 1)
    return X, Y


x, y = get_data()


# 模型
def lstm_model():
    model = Sequential()
    model.add(LSTM(HIDDEN_UNITS, input_shape=(TIMESTEP, 1)))
    model.add(Dense(1))
    return model


# 训练模型
def train_model():
    model = lstm_model()
    # model.compile(loss='mean_squared_error',optimizer='adam')
    model.compile(loss='mean_squared_error',
                  optimizer=optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08))
    model.fit(x, y, batch_size=BATCH_SIZE, nb_epoch=EPOCH, verbose=1)
    #模型保存
    model.save_weights(model_store)


# 预测模型
def predict_model():
    model = lstm_model()
    # 模型加载
    model.load_weights(model_store)

    result = list()
    tmp = x[-1]
    print('tmp', tmp)
    for i in range(200):
        p = model.predict(tmp.reshape(1, TIMESTEP, 1))
        result.append(p[0])
        tmp[:TIMESTEP - 1, :] = tmp[1:TIMESTEP, :]
        tmp[TIMESTEP - 1, :] = p[0]
    result = np.array(result)
    print('prediction:', result)
    draw(y, result)


if __name__ == '__main__':
    train_model()
    predict_model()

这里写图片描述

2、预测字母,如输入‘abc’输出‘d’

import string
import numpy as np

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras import optimizers
from keras.utils import np_utils

TIMESTEP = 3
HIDDEN_UNITS = 100
BATCH_SIZE = 10
EPOCH = 10
alphabet = string.ascii_letters
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
model_store = 'model\lstm_char_model.h5'
LEN_CHARS = len(alphabet)
alphabet_one_hot = np_utils.to_categorical(range(LEN_CHARS))


def get_data():
    dataX = []
    dataY = []
    for i in range(0, len(alphabet) - TIMESTEP, 1):
        seq_in = alphabet_one_hot[i:i + TIMESTEP]
        seq_out = alphabet_one_hot[i + TIMESTEP]
        dataX.append(seq_in)
        dataY.append(seq_out)
    return np.array(dataX), np.array(dataY)


x, y = get_data()


# 模型
def lstm_model():
    model = Sequential()
    model.add(LSTM(HIDDEN_UNITS, input_shape=(TIMESTEP, LEN_CHARS)))
    model.add(Dense(LEN_CHARS))
    return model


# 训练模型
def train_model():
    model = lstm_model()
    # model.compile(loss='mean_squared_error',optimizer='adam')
    model.compile(loss='mean_squared_error',
                  optimizer=optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08))
    model.fit(x, y, batch_size=BATCH_SIZE, nb_epoch=EPOCH, verbose=1)
    # 模型保存
    model.save_weights(model_store)


# 预测模型
def predict_model():
    model = lstm_model()
    # 模型加载
    model.load_weights(model_store)
    for i in range(LEN_CHARS - 3):
        str_in = alphabet[i:i + TIMESTEP]
        str_to_int = [char_to_int[item] for item in str_in]
        str_to_one_hot = np.array([alphabet_one_hot[item] for item in str_to_int])

        p = model.predict(str_to_one_hot.reshape(-1, TIMESTEP, LEN_CHARS))
        p = ''.join([int_to_char[item] for item in np.argmax(p, axis=1)])
        print('input:{}->prediction:{}'.format(str_in, p))


if __name__ == '__main__':
    train_model()
    # predict_model()

 #输出结果
#input:abc->prediction:d
#input:bcd->prediction:e
#input:cde->prediction:f
#input:def->prediction:g
#input:efg->prediction:h
#input:fgh->prediction:i
#input:ghi->prediction:j
#input:hij->prediction:k
#input:ijk->prediction:l
#input:jkl->prediction:m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值