强化学习介绍

介绍

强化学习 Reinforcement Learning 简称 RL,是一种机器学习方法,旨在训练智能体(或机器人)从环境中获得经验,通过试错的方式逐渐提高其决策能力,以实现特定的目标。强化学习涉及到智能体与环境之间不断的互动和反馈,智能体根据环境的反馈调整其行为策略,逐渐学习到最优的决策方案。强化学习在众多领域中都有广泛的应用,如自动驾驶、游戏策略、金融交易、机器人控制等。

强化学习背后的思想是:
一个agetn(智能体/机器人)从“与环境交互并从行动中获取奖励”中学习——这类似于人的成长过程。

Tips:
强化学习解决特定类型的问题,其中决策是连续的,并且目标是长期的,例如游戏、机器人、资源管理或物流。

重要概念

  • agent: 可以通过反复试验学习并做出决策的实体,它从周围环境中获得奖励和惩罚。
  • environment: 虚拟的世界,用于 agent 通过与其交互来学习。
  • state: 对 environment 的完整描述。
  • action: agent 执行的操作
  • reward: 分为激励和惩罚,是 RL 的基本因素,用于告诉 agent 它的 action 产生的结果是好还是坏。

RL 过程简介

框架
强化学习框架

过程
强化学习过程:状态、行动、奖励和下一个状态的循环:

  • agent 从 environment 中获取第一个 state S0;
  • 基于 S0,agent 采取第一个 action A0;
  • environment 给出一个新的 state S1;
  • environment 给出 reward R1;

循环以上 state、action 和 reward 步骤。
agent 的目的是最大化累积奖励。

马尔可夫性质

RL 过程称为马尔可夫决策过程 (MDP)
MDP 意味着 agent 只需要根据当前的状态来决定采取什么行动,而不是之前采取的所有状态和行动的历史。

基于回报假设的中心思想

RL 的目的是获取累积的奖励,期望获取最大累积收益。

  1. 基本公式
    G t = R t + 1 + R t + 2 + . . . G_t = R_{t+1} + R_{t+2} + ... Gt=Rt+1+Rt+2+...
    等价于:
    G t = ∑ k = 0 T R t + k + 1 G_t =\sum_{k=0}^T R_{t+k+1} Gt=k=0TRt+k+1

  2. Jerry & Tom 的故事
    Jerry & Tom

这里 agent 是 Jerry。
Jerry 想要获得最大的累积奖励就是要吃掉所有的奶酪,但是越靠近 Tom 的地方危险就越大——即使那边有更多的奶酪,我们可能也不愿意先去冒这个风险,因为一旦被 Tom 抓住就无法再获取更多的奶酪,从而无法达成 Jerry 的目标。
所以再这里我们引入奖励系数 γ \gamma γ

  • 危险越大,回报系数 γ \gamma γ 越小,Jerry 更关心短期奖励;
  • 危险越小,回报系数 γ \gamma γ 越大,Jerry 更关心长期奖励;
  1. 改良后的公式
    G t = ∑ k = 0 ∞ γ k R t + k + 1 w h e r e γ ∈ [ 0 , 1 ) G_t =\sum_{k=0}^\infty \gamma^k R_{t+k+1} where \gamma \in [0, 1) Gt=k=0γkRt+k+1whereγ[0,1)
    R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . R_{t+1} + \gamma R_{t+2} + \gamma ^2 R_{t+3} + ... Rt+1+γRt+2+γ2Rt+3+...
    本公式是在基本公式的基础上增加了奖励的权重:在每一步中都会按照权重的时间指数形式对奖励重新计算。
    随着时间的增加,Jerry 离 Tom 越近未来奖励发生的可能性越小。

任务模型

  • 场景任务模型
    这个模型中存在明确的开始点和结束点,例如游戏:进入游戏是开始点,游戏结束(被打死,或者玩到通关)是结束点。
  • 连续任务模型
    在这个模型中一旦开始就会一直持续下去——除非主动退出,例如投资股票,需要不断的关注时长的变化。

两种解决思路

针对任务模型,这里提出了两种解决思路:

  • 蒙特卡洛方法
  • 时间差学习方法
  1. 蒙特卡洛方法(Monte Carlo)
    在场景的结束时获取所有的奖励,并计算总体奖励
    蒙特卡洛公式

1.1 步骤

  • 游戏开始作为场景的起点;
  • 游戏结束作为场景的终点;
  • 在终点我们会得到一个 stats、actions、rewords和新states 的列表;
  • 根据公式计算总奖励;
  • 根据上面的公式更新 V ( s t ) V(st) V(st)
  • 开始新一轮的游戏;

随着运行次数增多,我们的 Jerry 会吃得越来越多。

  1. 时间差学习方法(TD Temporal Difference Learning)
  • TD 的方法与蒙特卡洛方法相反,它不会等待场景的结束在去计算,而是在每一步中评估未来预期最大奖励:它为当前经历的状态 S 评估价值 V;
  • TD的核心思想是评估:通过将其更新为一步目标来更新先前的估计 V ( S t ) V(S_t) V(St)
  1. 两者之间的区别
    两种思路公式对比
  • TD 不会等待场景的结束,而是在(t+1)时刻后都会使用得到的奖励值 R t + 1 R_{t+1} Rt+1来评估当前状态下的价值 V ( S t + 1 ) V(S_{t+1}) V(St+1)
  • 蒙特卡洛方法则需要经历多个周期才能得到理想的效果。

探索与开发的平衡

  • 探索:探索是指获取环境中更多的信息;
  • 开发:是从已知的信息中获取最大的收益;

Jerry‘s 迷宫
我们时可要记住 Jerry 的目标是最大化预期的累积收益。
在上面这个例子中,如果只有开发,则如果 Jerry 周边有无穷的小奶酪的话,Jerry 仅会关注周围的小奶酪,而不会获取到远处的大奶酪;假如在这里加入一些探索,Jerry 就能获得更大的奖励。
所以我们需要指定一个规则,用于对探索和开发的平衡。

三种方法

  • 基于价值的方法
  • 基于策略的方法
  • 基于模型的方法
  1. 基于价值的方法

目标: 优化价值函数 V ( s ) V(s) V(s)
价值函数 告诉我们在 agent 每个状态下的最大未来预期回报。
公式:
价值函数
每个状态的价值是 agent 从该状态开始在未来期望累积的奖励总额。
agent 利用价值函数来选择每一步的状态:它会选择最大价值的状态。

  1. 基于策略的方法

目标: 直接优化策略函数 π ( s ) \pi(s) π(s)
策略: 是在给定的时间定义的 agent 的行为
公式:
策略函数
通过策略函数,可以得到状态和最佳操作的映射关系。

两种策略:

  • 确定性:一个给定的状态总是返回相同的操作;
  • 随机性:输出操作的分布概率;
    随机策略公式
  1. 基于模型的方法
    不同的环境有不同的模型,所以需要针对每种环境建立一个模型。

Q-Learning & Deep Q-Learning

Q-Learning: 采用传统的算法去产生 Q table;
Deep Q-Learning: 采用神经网络产生 Q value;
Q-Learning

参考文档

[1] https://medium.com/free-code-camp/an-introduction-to-reinforcement-learning-4339519de419

<think>好的,我现在需要回答用户关于深度强化学习的基本概念和应用的入门介绍及原理。首先,我需要确保自己正确理解深度强化学习的核心组成部分。根据用户提供的引用资料,深度强化学习(DRL)结合了强化学习(RL)和深度学习(DL),使用神经网络来优化强化学习算法。 首先,我应该从基本概念入手。强化学习的基础包括智能体、环境、状态、动作和奖励机制。智能体在环境中采取动作,环境返回新的状态和奖励,目标是最大化累积奖励。这部分需要解释清楚,可能还需要提到马尔可夫决策过程(MDP),但用户提供的引用中没有提到,所以可能需要保持简洁。 接下来是深度学习的引入。传统强化学习在处理高维状态空间(如图像输入)时效率低下,深度学习通过神经网络提取特征,帮助处理这些复杂数据。例如,深度Q网络(DQN)使用卷积神经网络近似Q值函数。需要提到DQN的关键技术,比如经验回放和目标网络,以稳定训练。 然后,算法原理部分需要涵盖Q学习和DQN,以及策略梯度方法。Q学习是基于值函数的方法,而策略梯度直接优化策略。这部分可能需要简要对比两者的区别和应用场景。 应用方面,用户提供的引用提到了游戏AI、自动驾驶、机器人控制和金融投资。需要具体举例,比如AlphaGo使用DRL击败人类选手,自动驾驶中的决策系统,机器人抓取任务的训练,以及金融中的投资组合优化。这些例子能让用户更直观理解应用场景。 挑战部分,用户提到的样本效率、训练稳定性、多智能体系统等,但用户的问题主要是入门介绍,所以这部分可能简要提及即可,或者放在最后作为扩展。 需要确保回答结构清晰,分点阐述,使用中文,数学公式正确用$...$和$$...$$格式。例如,提到贝尔曼方程时用独立公式: $$Q(s,a) = \mathbb{E}\left[ r + \gamma \max_{a'} Q(s',a') \right]$$ 同时,根据用户要求,生成相关问题,可能需要包括DRL的核心组成、DQN的改进、应用案例、与传统RL的区别、训练挑战等。 现在需要检查是否符合用户的所有要求:行内公式正确,独立公式单独成段,LaTeX语法正确,中文回答,生成相关问题,引用标识。引用资料中的[^1]和[^2]需要自然地融入回答,例如在解释核心概念时引用[^1],在结合DL和RL时引用[^2]。 可能还需要注意避免技术术语过多,保持入门级别的解释,同时准确无误。例如,解释智能体与环境互动时,用简单例子说明。确保代码示例正确,用户提供的引用中没有代码,但示例中有Python代码,可能需要虚构一个简单的DRL代码片段,比如DQN的部分伪代码,但用户问题中没有要求代码,所以可能可以省略,除非必要。 最后,生成的相关问题需要与内容相关,帮助用户进一步学习,如基本原理、DQN的改进、应用案例、挑战等。</think>### 深度强化学习入门介绍及原理 #### 一、核心概念 深度强化学习(Deep Reinforcement Learning, DRL)是**强化学习(RL)与深度学习(DL)的结合**,通过神经网络处理高维状态空间,实现复杂决策任务。其核心包含三个要素: 1. **智能体(Agent)**:执行动作的决策主体。 2. **环境(Environment)**:智能体交互的外部系统。 3. **奖励机制(Reward)**:环境对智能体动作的反馈信号,用于优化长期累积收益。 智能体通过**状态(State)**感知环境,选择**动作(Action)**后,环境更新状态并返回奖励。目标是通过策略(Policy)最大化未来折扣奖励的总和: $$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \quad (0 < \gamma \leq 1)$$ #### 二、算法原理 1. **基于值函数的方法**(如DQN) 通过神经网络近似**Q值函数**$Q(s,a)$,表示在状态$s$下执行动作$a$的长期收益。Q值更新遵循贝尔曼方程: $$Q(s,a) = \mathbb{E}\left[ r + \gamma \max_{a'} Q(s',a') \right]$$ **深度Q网络(DQN)**的两大改进: - **经验回放**:缓存历史数据,打破样本相关性。 - **目标网络**:固定参数计算目标Q值,提升训练稳定性[^1]。 2. **策略梯度方法**(如Actor-Critic) 直接优化策略函数$\pi(a|s;\theta)$,通过梯度上升更新参数$\theta$: $$\nabla_\theta J(\theta) = \mathbb{E}\left[ \nabla_\theta \log \pi(a|s;\theta) \cdot Q^\pi(s,a) \right]$$ #### 三、典型应用 1. **游戏AI**:AlphaGo通过DRL击败人类围棋冠军,Atari游戏智能体仅凭像素输入学习策略[^2]。 2. **自动驾驶**:车辆在模拟环境中学习避障、路径规划等决策。 3. **机器人控制**:机械臂通过试错学习抓取和搬运物体的动作序列。 4. **金融投资**:优化交易策略以最大化投资回报,同时控制风险。 #### 四、训练挑战 - **样本效率**:DRL需要大量交互数据,实际场景成本高。 - **探索与利用平衡**:智能体需在尝试新动作(探索)与选择已知高收益动作(利用)间权衡。 - **训练稳定性**:神经网络易受输入分布漂移影响,需设计正则化方法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值