2.1 经验误差与过拟合
- 错误率:分类错误的样本数a占样本总数m的比例,E = a/m
精度: 1 - a/m- 学习器在训练集上的误差称之为:“训练误差”或者“经验误差”,在新样本上的误差称之为“泛化误差”
- 过拟合:当学习器在训练样本上训练误差降低,但是泛化误差增加,通常的原因在于学习器的学习能力过于强大,以至于把训练样本中所包含的不太一般的特性都学到了。
欠拟合:通常是由于学习能力低下造成的
过拟合是无法避免的,因为机器学习面临的问题通常通常都是NP难的问题,而有效的机器学习算法必然要在多项式时间内完成,若能够彻底避免过拟合,则通过经验误差最小化就能够获得最优解,而这个也就意味着“NP = P”,但是就目前而言,还是相信“NP != P”的。关于NP问题,具体可见NP完全问题
2.2 评估方法
留出法(hold-out):直接将数据集划分为两个互斥的集合,一个作为训练集,一个作为测试集。 训练集/测试集的划分应该尽可能地保持数据分布的一致性 ,其中通常采用2/3~4/5的样本作为训练集,其余的作为测试集。
交叉验证法(cross validation):先将数据集划分为k个大小相似的互斥子集,其中每个子集尽可能保持数据分布一致性,然后每次用k-1个子集的并集作为训练集,余下的那个作为测试集。 通常称之为“k折交叉验证”(“k-fold cross validation”),k通常取值为10
留一法(leave-one-out):令k=m,其中m表示样本的数目,即每个子集中只有一个样本,不受随机划分的影响, 计算复杂度较高
自助法(boostrapping):通过采样产生数据集D‘,其中每次随机从D中挑选一个样本,将其拷贝放入D’,然后将该样本放回初始数据集D中,重复执行m次以后,我们可以得到包含m个样本的数据集D’。样本在m次采样中,始终不被采样到的概率为 ( 1 − 1 m ) m , (1-\frac{1}{m})^m, (1−m1)m,则取极限为
l i m m → ∞ ( 1 − 1 m ) ≃ 1 e ≃ 0.368. lim_{m \to \infty}(1 - \frac{1}{m}) \simeq \frac{1}{e} \simeq 0.368. limm→∞(1−m1)≃e1≃0.368.准确率和召回率 : 准确率指的是预测的正样本数量占总样布数量的比例,召回率指的是预测的正样本数量占总样本数量的比例。
在商品推荐系统中,为了尽可能少打扰用户,更希望推荐内容是用户感兴趣的内容,因此准确率更加重要。
F1 是准确率和召回率的调和平均
真样本率:预测为正且实际为正的样本占所有实际为正样本的比例
假样本率:预测为正且实际为假的样本占所有实际为假样本的比例
ROC曲线:由(真样本率,假样本率)坐标形成的点所连接的曲线,AUC是ROC曲线下的面积