《机器学习》周志华 第二章 模型评估与选择

2.1 经验误差与过拟合
  • 错误率:分类错误的样本数a占样本总数m的比例,E = a/m
    精度: 1 - a/m
  • 学习器在训练集上的误差称之为:“训练误差”或者“经验误差”,在新样本上的误差称之为“泛化误差”
  • 过拟合:当学习器在训练样本上训练误差降低,但是泛化误差增加,通常的原因在于学习器的学习能力过于强大,以至于把训练样本中所包含的不太一般的特性都学到了。
    欠拟合:通常是由于学习能力低下造成的
    过拟合是无法避免的,因为机器学习面临的问题通常通常都是NP难的问题,而有效的机器学习算法必然要在多项式时间内完成,若能够彻底避免过拟合,则通过经验误差最小化就能够获得最优解,而这个也就意味着“NP = P”,但是就目前而言,还是相信“NP != P”的。关于NP问题,具体可见NP完全问题
2.2 评估方法
  • 留出法(hold-out):直接将数据集划分为两个互斥的集合,一个作为训练集,一个作为测试集。 训练集/测试集的划分应该尽可能地保持数据分布的一致性 ,其中通常采用2/3~4/5的样本作为训练集,其余的作为测试集。

  • 交叉验证法(cross validation):先将数据集划分为k个大小相似的互斥子集,其中每个子集尽可能保持数据分布一致性,然后每次用k-1个子集的并集作为训练集,余下的那个作为测试集。 通常称之为“k折交叉验证”(“k-fold cross validation”),k通常取值为10

  • 留一法(leave-one-out):令k=m,其中m表示样本的数目,即每个子集中只有一个样本,不受随机划分的影响, 计算复杂度较高

  • 自助法(boostrapping):通过采样产生数据集D‘,其中每次随机从D中挑选一个样本,将其拷贝放入D’,然后将该样本放回初始数据集D中,重复执行m次以后,我们可以得到包含m个样本的数据集D’。样本在m次采样中,始终不被采样到的概率为 ( 1 − 1 m ) m , (1-\frac{1}{m})^m, (1m1)m则取极限为
    l i m m → ∞ ( 1 − 1 m ) ≃ 1 e ≃ 0.368. lim_{m \to \infty}(1 - \frac{1}{m}) \simeq \frac{1}{e} \simeq 0.368. limm(1m1)e10.368.

  • 准确率和召回率 : 准确率指的是预测的正样本数量占总样布数量的比例,召回率指的是预测的正样本数量占总样本数量的比例。

  • 在商品推荐系统中,为了尽可能少打扰用户,更希望推荐内容是用户感兴趣的内容,因此准确率更加重要。

  • F1 是准确率和召回率的调和平均

  • 真样本率:预测为正且实际为的样本占所有实际为样本的比例
    假样本率:预测为正且实际为的样本占所有实际为样本的比例
    ROC曲线:由(真样本率,假样本率)坐标形成的点所连接的曲线,AUC是ROC曲线下的面积

1. 什么是泛化能力?泛化能力和过拟合之间有什么关系? 泛化能力是指模型在新的、未见过的数据上的表现能力。模型的泛化能力与其对训练数据的拟合程度有关,通常来说,过拟合的模型泛化能力较差。 2. 什么是交叉验证?交叉验证的作用是什么? 交叉验证是一种通过将数据集分成若干个子集来进行模型评估的方法。具体地,将数据集分成k个子集,每个子集都轮流作为测试集,其余子集作为训练集,重复k次,最终得到k个模型评估结果的平均值。交叉验证的作用是提高模型评估的可靠性和泛化能力。 3. 留出法、k折交叉验证和留一法的区别是什么?它们各自适用于什么情况? 留出法是将数据集分成两部分,一部分作为训练集,另一部分作为测试集。留出法适用于数据集较大的情况。 k折交叉验证是将数据集分成k个子集,每个子集都轮流作为测试集,其余子集作为训练集,重复k次,最终得到k个模型评估结果的平均值。k折交叉验证适用于数据集较小的情况。 留一法是k折交叉验证的一种特殊情况,即将数据集分成n个子集,每个子集都作为测试集,其余子集作为训练集,重复n次。留一法适用于数据集较小且样本数较少的情况。 4. 为什么要对数据进行预处理?数据预处理的方法有哪些? 数据预处理可以提高模型的表现,并且可以减少过拟合的风险。数据预处理的方法包括:标准化、归一化、缺失值填充、特征选择、特征降维等。 5. 什么是特征选择?特征选择的方法有哪些? 特征选择是指从所有特征中选择出对模型预测结果有重要贡献的特征。特征选择的方法包括:过滤式方法、包裹式方法和嵌入式方法。其中,过滤式方法是基于特征间的关系进行特征选择,包裹式方法是基于模型的性能进行特征选择,嵌入式方法是将特征选择嵌入到模型训练中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值