小编最近在学习深度学习,打算写一个学习笔记,便于后续的复习和快速查找。
本文主要说明pytorch框架中utils.data.TensorDataset和utils.data.DataLoader两个工具类。
一、定义
1、TensorDataset类:是torch中util.data包下面的一个工具类,用于把特征和标签整合一个数据集,便于将整个数据集拆分小批量数据集,用于后续小批量梯度下降训练。其输入参数是可变参数,可接受一个或多个张量数据。
2、DataLoader类:是torch中util.data包下面的一个工具类,用于将TensorDataset整合的数据集(比较大,比如1000个特征和1000个标签)划分为小批量数据级,比如批量大小为10,就会划分为100个。
DataLoader函数的参数后面如下:来源于pytorch中文文档
https://pytorch-cn.readthedocs.io/zh/latest/package_references/data/

本文详细介绍了PyTorch库中的TensorDataset和DataLoader工具类,它们分别用于整合特征和标签数据并进行小批量训练,通过实例展示了如何在实际项目中使用这两个类进行数据预处理和加载。
最低0.47元/天 解锁文章
1万+





