【动手学深度学习3】实战pytorch中的utils.data.TensorDataset和utils.data.DataLoader工具类

本文详细介绍了PyTorch库中的TensorDataset和DataLoader工具类,它们分别用于整合特征和标签数据并进行小批量训练,通过实例展示了如何在实际项目中使用这两个类进行数据预处理和加载。

小编最近在学习深度学习,打算写一个学习笔记,便于后续的复习和快速查找。

本文主要说明pytorch框架中utils.data.TensorDataset和utils.data.DataLoader两个工具类。

一、定义

1、TensorDataset类:是torch中util.data包下面的一个工具类,用于把特征和标签整合一个数据集,便于将整个数据集拆分小批量数据集,用于后续小批量梯度下降训练。其输入参数是可变参数,可接受一个或多个张量数据。

2、DataLoader类:是torch中util.data包下面的一个工具类,用于将TensorDataset整合的数据集(比较大,比如1000个特征和1000个标签)划分为小批量数据级,比如批量大小为10,就会划分为100个。

DataLoader函数的参数后面如下:来源于pytorch中文文档

https://pytorch-cn.readthedocs.io/zh/latest/package_references/data/

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值