Gauss光束在空间中的分布

本文介绍Gauss光束的基本概念与数学表达,并通过Python编程实现Gauss光束在不同位置处的强度分布与束腰半径变化的可视化展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gauss光束强度的表达式为

ψ ( x , y , z ) = I 0 ω ( z ) exp ⁡ [ − r 2 ω 2 ( z ) ] \psi(x,y,z)=\frac{I_0}{\omega(z)}\exp{[-\frac{r^2}{\omega^2(z)}]} ψ(x,y,z)=ω(z)I0exp[ω2(z)r2]

其中,

{ ω ( z ) = ω 0 1 + ( z f ) 2 = ω 0 2 + z 2 λ 2 π 2 ω 0 2 f = π ω 0 2 λ ω 0 = f λ π \left\{\begin{aligned} \omega(z)=&\omega_0\sqrt{1+(\frac{z}{f})^2}\\ =&\sqrt{\omega_0^2+\frac{z^2\lambda^2}{\pi^2\omega^2_0}}\\ f=&\frac{\pi\omega_0^2}{\lambda}\\ \omega_0=&\sqrt{\frac{f\lambda}{\pi}} \end{aligned}\right. ω(z)==f=ω0=ω01+(fz)2 ω02+π2ω02z2λ2 λπω02πfλ

如图所示

在这里插入图片描述
左上图和左下图表示激光传输过程中的其束腰半径的变化情况;右图则表示高斯光束某一横截面处激光的能量分布。

绘制代码如下

import matplotlib.pyplot as plt
import numpy as np
def setLabel(ax,*args):
    ax.set_xlabel(args[0])
    ax.set_ylabel(args[1])
    if len(args)==3:
        ax.set_zlabel(args[2])

def drawGauss(w0=1,dWave=1.064):
    # 轴向坐标
    z = np.linspace(-10,10,1000).reshape(1000,1)
    # z处光斑半径
    w = np.sqrt(w0**2+z**2*dWave**2/np.pi**2/w0**2)
    theta = np.linspace(0,np.pi*2,150).reshape(1,150)
    x = w*np.cos(theta)
    y = w*np.sin(theta)
    fig =  plt.figure()

    # 三维的高斯光束等功率密度面变化图
    ax1 = fig.add_subplot(221,projection='3d')
    ax1.plot_surface(z,x,y)#,cmap=plt.get_cmap('rainbow'))
    ax1.set_title("waist shape changed by propagation")
    setLabel(ax1,"z","x","y")

    # 二维的高斯光束半径变化图
    ax3 = fig.add_subplot(223)
    ax3.plot(z,w,linewidth=1)
    ax3.plot(z,-w,linewidth=0.2)
    ax3.plot([z[0],z[-1]],[0,0],linewidth=0.5,linestyle=":")
    ax3.set_title("waist value changed by propagation")
    setLabel(ax3,"z","w")
    
    # Gauss光束在束腰处的切片
    X,Y = np.meshgrid(np.linspace(-5,5,100),np.linspace(-5,5,100))
    Psi = np.exp(-(X**2+Y**2)/w0**2)/w0
    ax2 = fig.add_subplot(222,projection='3d')
    ax2.plot_surface(X,Y,Psi)
    ax2.set_title("Intensity distribution on waist0")
    setLabel(ax2,"x","y","Instensity")

    # Gauss光束在束腰处的径向切片
    r = np.linspace(-5,5,200)
    Psi = np.exp(-r**2/w0**2)/w0
    ax4 = fig.add_subplot(224)
    ax4.plot(r,Psi)
    ax4.set_title("Intensity distribution on waist0")
    setLabel(ax4,"r","Instensity")

    plt.show()

如果沿着z轴方向,在不同的位置处对Gauss光束进行切片处理,则不同位置处径向功率分布如图所示

在这里插入图片描述

实现代码如下

import matplotlib.animation as animation
def GaussGif1d(w0=1,dWave=1.064):
    zAxis = np.arange(100)
    # 轴向坐标
    z = np.linspace(0,10,100)
    # z处的束腰半径
    w = np.sqrt(w0**2+z**2*dWave**2/np.pi**2/w0**2)
    x = np.linspace(-10,10,500)
    
    fig = plt.figure()
    ax = fig.gca(xlim=(-5,5),ylim=(0,1))
    ax.grid()

    line, = ax.plot([],[])
    time_text = ax.text(0.1,0.9,'',transform=ax.transAxes)

    # 初始化图像
    def init():
        line.set_data([],[])
        time_text.set_text("")
        return line, time_text
    
    # 图像迭代
    def animate(i):
        wi = w[i]
        Psi = np.exp(-x**2/wi**2)/wi
        line.set_data(x,Psi)
        time_text.set_text("z="+str(z[i]))
        return line, time_text

    ani = animation.FuncAnimation(fig, animate, zAxis,
        interval=200, init_func=init)

    ani.save('gauss.gif',writer='imagemagick')
    plt.show()

Laplace和Gauss是两个经常用于描述概率分布的模型,它们都与正态分布相关。 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它的概率密度函数在数学上可以用公式来表示,即正态分布函数的形式为e的负x平方除以2乘上方根2乘上π,并且是一个关于均值μ和方差σ^2的函数。 在正态分布中,均值μ表示分布的中心位置,方差σ^2则描述了分布的离散程度。当μ为0,σ^2为1时,正态分布被称为标准正态分布。其概率密度函数呈钟形曲线,均值处为分布的峰值,随着离均值的距离增加,概率密度逐渐减小,但不会变为0。 Laplace分布和正态分布有些类似,但其形状更接近于矩形。Laplace分布也被称为双指数分布,其概率密度函数包含了两个指数函数的差值,使得其在中心点附近有一个尖峰。与正态分布不同的是,Laplace分布的尾部较重,尤其是在两个尖峰之间。 Laplace分布在统计学和机器学习领域中经常用于描述离群点(outliers)的分布。由于其尾部较重,它对极端值更为敏感,因此适用于描绘那些数据中包含了一些离群点的情况。 总结来说,正态分布和Laplace分布都是用于描述概率分布的模型。正态分布具有钟形曲线,常用于连续变量的建模,而Laplace分布则更适用于描述离群点分布的情况。这两个分布模型在统计学和机器学习中都有广泛的应用。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值