【Python】Scipy定义的物理常数

Scipy中的常数

scipy.constants中封装了诸多常数,例如最常用的 π \pi π

import scipy.constants as C
print(C.pi)
# 3.141592653589793
常数代码
黄金分割golden, golden_ratio1.618033988749895
光速 c c cc, speed_of_light299792458.0
真空磁导率 μ 0 \mu_0 μ0mu_01.25663706212e-06
真空介电常数 ϵ 0 \epsilon_0 ϵ0epsilon_08.8541878128e-12
普朗克常量 h h hh, Planck6.62607015e-34
约化普朗克常量 ℏ \hbar hbar1.0545718176461565e-34
万有引力常数 G G GG, gravitational_constant6.6743e-11
重力加速度 g g gg9.80665
电子电荷e, elementary_charge1.602176634e-19
电子质量 m e m_e mem_e, electron_mass9.1093837015e-31
质子质量 m p m_p mpm_p, proton_mass1.67262192369e-27
中子质量 m n m_n mnm_n, neutron_mass1.67492749804e-27
摩尔气体常量 R R RR, gas_constant8.314462618
精细结构常数 α \alpha αalpha, fine_structure0.0072973525693
阿伏伽德罗常数 N A N_A NAN_A, Avogadro6.02214076e+23
玻尔兹曼常数 k k kk, Boltzmann1.380649e-23
斯特藩-玻爾茲曼常數 σ \sigma σStefan_Boltzmann, sigma5.670374419e-08
维恩常数Wien0.002897771955
里德伯常数Rydberg10973731.56816

scipy.constants.physical_constants是一个涵盖了更多物理量的字典,通过键值索引,可以得到相应物理量的值和单位,如下面代码所示

>>> cDct = C.physical_constants
>>> from pprint import pprint
>>> pprint(cDct)
{'Angstrom star': (1.00001495e-10, 'm', 9e-17),
 'Avogadro constant': (6.02214076e+23, 'mol^-1', 0.0),
 'Bohr magneton': (9.2740100783e-24, 'J T^-1', 2.8e-33),
 'Bohr magneton in Hz/T': (13996244936.1, 'Hz T^-1', 4.2),
 # ....太多了,后面就省略了

重力加速度为何约等于π的平方

这些物理或者数学常数中有很多有趣的联系,其中 π \pi π的地位举足轻重,例如重力加速度 g ≈ π 2 g\approx\pi^2 gπ2,二者只差了百分之0.6

>>> (C.pi**2-C.g)/C.g
0.006419562346913429 #

这和秒曾经的定义有关,即一米长的单摆在地球上摆动半个周期的时长为秒,而这个一米长的单摆,其实就是钟。

光速和介电常数的关系

光速 c = 1 μ 0 ϵ 0 c=\frac{1}{\sqrt{\mu_0\epsilon_0}} c=μ0ϵ0 1,其中 μ 0 , ϵ 0 \mu_0, \epsilon_0 μ0,ϵ0都是麦克斯韦方程组里面的常数,在真空自由场中,由麦克斯韦方程组可以得到波动方程,而 1 ϵ 0 μ 0 \frac{1}{\epsilon_0\mu_0} ϵ0μ01是波动方程中的一个系数,正好代表光速的平方。

精细结构常数

精细结构常数是一个非常有名的数字,几乎等于 1 137 \frac{1}{137} 1371,更屌的是这个常数是无量纲的,就是说,无论什么单位制,这个值都不变,其定义为

α = e 2 2 ϵ 0 h c \alpha=\frac{e^2}{2\epsilon_0hc} α=2ϵ0hce2

>>> 1/(C.e**2/2/C.epsilon_0/C.h/C.c)
137.03599908410834

这个常数是当年索莫菲在解释氢原子光谱的精细结构时引入的,此即名称来源。通过 α \alpha α,可以更加简洁地表示氢原子中的电子能量

E n = − α 2 2 n 2 E 0 E_n=-\frac{\alpha^2}{2n^2}E_0 En=2n2α2E0

这个常数非常魔幻,2018年,菲尔兹奖得主阿蒂亚声称用这个常数证明了黎曼猜想,但并没有人相信,第二年他就去世了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值