精简CNN模型

精简CNN模型

一、MobileNet

在这里插入图片描述
MobileNet V1理论:Depthwise Convolution + Pointwise Convolution
https://blog.csdn.net/u014380165/article/details/72938047
MobileNet V2理论:Linear Bottlenecks + Inverted residuals
https://blog.csdn.net/u014380165/article/details/79200958

代码:https://www.cnblogs.com/ansang/p/9159440.html

二、SqueezeNet

在这里插入图片描述
https://www.jianshu.com/p/9a70942af217

三、SkipNet

在这里插入图片描述
https://www.jianshu.com/p/72bbd7d1d2de

四、ShuffleNet

在这里插入图片描述
ShuffleNet V1理论:https://www.jianshu.com/p/44db6d72d6eb
ShuffleNet V2理论:https://www.jianshu.com/p/71e32918ea0a

五、Xception

在这里插入图片描述
理论:Depthwise Convolution + Pointwise Convolution
https://blog.csdn.net/u014380165/article/details/75142710

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值