应用:NumPy实现k均值聚类算法(K-means)

NumPy实现k均值聚类算法(K-means)

一、K-means聚类算法简介

在这里插入图片描述
其伪代码如下:

创建k个点作为初始的质心点(随机选择)
当任意一个点的簇分配结果发生改变时
    对数据集中的每一个数据点
        对每一个质心
            计算质心与数据点的距离
        将数据点分配到距离最近的簇
    对每一个簇,计算簇中所有点的均值,并将均值作为质心

下图展示了对n个样本点进行K-means聚类的效果,这里k取2。
在这里插入图片描述

二、NumPy实现

kmeans.py

from numpy import *
import time
import matplotlib.pyplot as plt

# calculate Euclidean distance
def euclDistance(vector1, vector2):
    return sqrt(sum(power(vector2 - vector1, 2)))

# init centroids with random samples
def initCentroids(dataSet, k):
    numSamples, dim = dataSet.shape
    centroids = zeros((k, dim))
    for i in range(k):
        index = int(random.uniform(0, numSamples))
        centroids[i, :] = dataSet[index, :]
    return centroids

# k-means cluster
def kmeans(dataSet, k):
    numSamples = dataSet.shape[0]
    # first column stores which cluster this sample belongs to,
    # second column stores the error between this sample and its centroid
    clusterAssment = mat(zeros((numSamples, 2)))
    clusterChanged = True

    ## step 1: init centroids
    centroids = initCentroids(dataSet, k)

    while clusterChanged:
        clusterChanged = False
        ## for each sample
        for i in xrange(numSamples):
            minDist  = 100000.0
            minIndex = 0
            ## for each centroid
            ## step 2: find the centroid who is closest
            for j in range(k):
                distance = euclDistance(centroids[j, :], dataSet[i, :])
                if distance < minDist:
                    minDist  = distance
                    minIndex = j

            ## step 3: update its cluster
            if clusterAssment[i, 0] != minIndex:
                clusterChanged = True
                clusterAssment[i, :] = minIndex, minDist**2

        ## step 4: update centroids
        for j in range(k):
            pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
            centroids[j, :] = mean(pointsInCluster, axis = 0)

    print 'Congratulations, cluster complete!'
    return centroids, clusterAssment

# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
    numSamples, dim = dataSet.shape
    if dim != 2:
        print "Sorry! I can not draw because the dimension of your data is not 2!"
        return 1

    mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
    if k > len(mark):
        print "Sorry! Your k is too large! please contact Zouxy"
        return 1

    # draw all samples
    for i in xrange(numSamples):
        markIndex = int(clusterAssment[i, 0])
        plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])

    mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
    # draw the centroids
    for i in range(k):
        plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)

    plt.show()

测试

测试数据是二维的,共80个样本。有4个类。如下

testSet.txt:

1.658985    4.285136
-3.453687    3.424321
4.838138    -1.151539
-5.379713    -3.362104
0.972564    2.924086
-3.567919    1.531611
0.450614    -3.302219
-3.487105    -1.724432
2.668759    1.594842
-3.156485    3.191137
3.165506    -3.999838
-2.786837    -3.099354
4.208187    2.984927
-2.123337    2.943366
0.704199    -0.479481
-0.392370    -3.963704
2.831667    1.574018
-0.790153    3.343144
2.943496    -3.357075
-3.195883    -2.283926
2.336445    2.875106
-1.786345    2.554248
2.190101    -1.906020
-3.403367    -2.778288
1.778124    3.880832
-1.688346    2.230267
2.592976    -2.054368
-4.007257    -3.207066
2.257734    3.387564
-2.679011    0.785119
0.939512    -4.023563
-3.674424    -2.261084
2.046259    2.735279
-3.189470    1.780269
4.372646    -0.822248
-2.579316    -3.497576
1.889034    5.190400
-0.798747    2.185588
2.836520    -2.658556
-3.837877    -3.253815
2.096701    3.886007
-2.709034    2.923887
3.367037    -3.184789
-2.121479    -4.232586
2.329546    3.179764
-3.284816    3.273099
3.091414    -3.815232
-3.762093    -2.432191
3.542056    2.778832
-1.736822    4.241041
2.127073    -2.983680
-4.323818    -3.938116
3.792121    5.135768
-4.786473    3.358547
2.624081    -3.260715
-4.009299    -2.978115
2.493525    1.963710
-2.513661    2.642162
1.864375    -3.176309
-3.171184    -3.572452
2.894220    2.489128
-2.562539    2.884438
3.491078    -3.947487
-2.565729    -2.012114
3.332948    3.983102
-1.616805    3.573188
2.280615    -2.559444
-2.651229    -3.103198
2.321395    3.154987
-1.685703    2.939697
3.031012    -3.620252
-4.599622    -2.185829
4.196223    1.126677
-2.133863    3.093686
4.668892    -2.562705
-2.793241    -2.149706
2.884105    3.043438
-2.967647    2.848696
4.479332    -1.764772
-4.905566    -2.911070

test_kmeans.py

测试代码:

from numpy import *
import time
import matplotlib.pyplot as plt

## step 1: load data
print "step 1: load data..."
dataSet = []
fileIn = open('E:/Python/Machine Learning in Action/testSet.txt')
for line in fileIn.readlines():
    lineArr = line.strip().split('\t')
    dataSet.append([float(lineArr[0]), float(lineArr[1])])

## step 2: clustering...
print "step 2: clustering..."
dataSet = mat(dataSet)
k = 4
centroids, clusterAssment = kmeans(dataSet, k)

## step 3: show the result
print "step 3: show the result..."
showCluster(dataSet, k, centroids, clusterAssment)

运行前后结果对比:
在这里插入图片描述

三、算法分析

k-means算法比较简单,但也有几个比较大的缺点:

  • (1)k值的选择是用户指定的,不同的k得到的结果会有挺大的不同,如下图所示,左边是k=3的结果,这个就太稀疏了,蓝色的那个簇其实是可以再划分成两个簇的。而右图是k=5的结果,可以看到红色菱形和蓝色菱形这两个簇应该是可以合并成一个簇的:
    在这里插入图片描述
  • (2)对k个初始质心的选择比较敏感,容易陷入局部最小值。例如,我们上面的算法运行的时候,有可能会得到不同的结果,如下面这两种情况。K-means也是收敛了,只是收敛到了局部最小值:
    在这里插入图片描述
  • (3)存在局限性,如下面这种非球状的数据分布就搞不定了:
    在这里插入图片描述
  • (4)数据库比较大的时候,收敛会比较慢。
    k-means老早就出现在江湖了。所以以上的这些不足也被世人的目光敏锐的捕捉到,并融入世人的智慧进行了某种程度上的改良。例如问题(1)对k的选择可以先用一些算法分析数据的分布,如重心和密度等,然后选择合适的k。而对问题(2),有人提出了另一个成为二分k均值(bisecting k-means)算法,它对初始的k个质心的选择就不太敏感,这个算法我们以后再分析和实现。

文章出处

作者:zouxy09
来源:CSDN
原文:https://blog.csdn.net/zouxy09/article/details/17589329

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: K-means聚类算法是一种常见的无监督学习算法,用于对数据进行聚类。在Python中,可以使用numpy库来实现K-means聚类算法。 以下是一个简单的示例代码: ```python import numpy as np def kmeans(X, K, max_iters): m, n = X.shape centroids = X[np.random.choice(m, K, replace=False), :] for i in range(max_iters): idx = np.argmin(np.sum((X - centroids[:, np.newaxis])**2, axis=2), axis=0) centroids = np.array([X[idx == k].mean(axis=0) for k in range(K)]) return centroids, idx # 测试代码 X = np.random.randn(100, 2) centroids, idx = kmeans(X, 3, 10) print(centroids) print(idx) ``` 在上面的代码中,`X`是数据集,`K`是聚类的数量,`max_iters`是最大迭代次数。函数`kmeans`返回聚类中心和每个数据点所属的聚类编号。 首先,随机选择K个数据点作为初始聚类中心。然后,重复以下步骤直到收敛: 1. 将每个数据点分配到最近的聚类中心。 2. 计算每个聚类的新中心位置。 最后,返回最终的聚类中心和每个数据点所属的聚类编号。 注意,这里的实现方式是比较简单的,并没有考虑到优化算法性能的问题。在实际应用中,可能需要使用更复杂的算法来提高算法效率。 ### 回答2: kmeans聚类算法是一种经典的无监督学习算法,主要用于将一组数据点划分到不同的类别中。它的原理是将数据分为K个簇,每个簇通过计算数据点与其所属簇的中心之间的距离,将数据点分配给最近的簇。 在使用kmeans算法进行聚类时,可以使用numpy库来进行向量化计算,提高算法的效率。首先,我们可以使用numpy的数组来存储数据点,每个数据点可以表示为一个包含多个特征的一维数组。 在使用kmeans算法时,首先需要确定聚类的个数K,然后随机选择K个数据点作为初始的聚类中心。接下来,将每个数据点与聚类中心计算距离,并将其分配到与其最近的聚类中心所属的簇中。 在numpy中,可以使用欧氏距离公式来计算两个点之间的距离。通过numpy的广播功能,我们可以简洁地计算每个数据点与每个聚类中心的距离。 计算完距离后,可以根据距离来更新每个数据点所属的簇,将其分配到离其最近的聚类中心所属的簇中。 然后,更新每个簇的中心,方法是计算每个簇中所有数据点的平均值。通过numpy的sum和mean函数,可以方便地进行这一计算。 然后,重复以上两个步骤,直到达到终止条件,如迭代次数达到预设值或簇中心不再发生显著变化。 最后,通过numpy可以方便地将聚类结果进行可视化,将每个簇的数据点以不同的颜色进行展示。 总结来说,numpy库是一种强大的工具,可以在kmeans聚类算法中实现向量化计算,提高算法的效率,并能方便地进行聚类结果的可视化。 ### 回答3: k-means聚类算法是一种常用的无监督学习算法,通过将数据集划分为k个不同的簇,使得簇内的数据点相似度较高,簇间的数据点相似度较低。而numpy是一个Python中常用的科学计算库,在k-means聚类算法中可以很好地配合使用。 首先,在使用k-means算法前,我们需要准备一个包含特征数据numpy数组。对于每个样本点,都有一个包含其特征的向量,这个特征向量可以是多维的。 然后,我们需要选择一个合适的k值,即簇的个数。根据选择的k值,我们可以使用numpy的rand()函数或者其他方法来初始化k个初始聚类中心。 接下来,我们通过计算每个样本点与各个聚类中心的距离,将样本划分给最近的聚类中心。这里,我们可以使用numpy的linalg.norm()函数来计算欧氏距离。 然后,我们根据每个簇内的样本点计算新的聚类中心,这个新的聚类中心将取簇内样本点的平均值。在numpy中,我们可以使用mean()函数来计算平均值。 之后,我们可以迭代地重复上述过程,直到聚类中心不再发生变化或者达到最大迭代次数。在numpy中,我们可以使用while循环或者其他方式来实现迭代过程。 最后,我们可以输出每个样本点所属的簇,并可视化结果。在numpy中,我们可以使用unique()函数来获得每个簇的唯一值,使用scatter()函数等方法来进行数据可视化。 综上所述,在使用k-means聚类算法时,可以借助numpy库中提供的函数和方法来实现算法的具体步骤,从而对数据集进行聚类分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值