Structure-Revealing联合去噪增强模型论文解读

一、文章摘要概述

文章的题目是:
《Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model》
这是一篇2018年6月份的TIP(视觉顶刊)会议文章,文章针对弱光(低照度)图像存在密集噪声的问题,提出一种基于Rubost Retinex分解模型的
Structure-revealing弱光增强方法,考虑图像存在的噪声项,并且为了有效地解决模型优化问题,文章提供了一种基于拉格朗日乘子的交替方向最小化(ADM)算法代替对数变换。另外文章指出,该算法还可用于处理如用于水下或遥感的图像增强,以及在模糊或沙尘条件下的图像增强问题。与前几篇JED(联合增强和去噪)文章相比,这篇文章重点介绍了ADM在序列迭代过程中的具体计算过程。总结一下,文章在使用传统方法做联合图像增强和去噪时,做了3项创新:

  • 在经典Retinex模型的基础上考虑噪声项的影响,提出一种Robust Retinex模型,并在模型基础上,首次尝试预测图像噪声,同时估计Structure-revealed 反射图和分段平滑的照明图。
  • 提出一种基于增广Lagrange乘子的ADM算法代替对数变换,有效解决了模型优化问题。
  • 该算法不仅可以用在含噪声弱光环境下,还可用在如水下图像增强、遥感图像增强、图像消除灰尘和灰尘的天气图像增强中。

二、背景(先验)知识

经典Retinex模型为:
I = R ∘ L \mathbf{I}=\mathbf{R}\circ \mathbf{L} I=RL式中, I \mathbf{I} I表示原始弱光图像, R \mathbf{R} R L \mathbf{L} L分别代表分解后的反射图和照明图。一般为减少计算量会转换到对数域计算分量。
但是,传统Retinex一方面对原始图像的光照平滑度和对比度有较高要求,另一方面没有考虑到模型噪声。因此文章提出一个Robust Retinex模型,并证明模型的优越性,公式如下:
I = R ∘ L + N \mathbf{I}=\mathbf{R}\circ \mathbf{L}+\mathbf{N} I=RL+N式中, N \mathbf{N} N表示噪声项,文章认为噪声项较为均匀的分布在原始图像中,在前人的工作中也有考虑噪声的弱光增强方法,值得借鉴:

  • Elad[PDF]使用两个双边滤波器,在对数域Retinex分解上抑制照明图和反射图噪声。
  • Li[PDF]在反射图估计后使用边缘保持平滑法实现去噪。
  • Yu[PDF]在反射图估计后使用导向滤波平滑法实现去噪。
    而文章不使用对数变换时,通过联合优化迭代方法分析模型和算法求解,如下。

二、Structure-Revealing弱光增强模型

联合去噪增强整体流程图:在这里插入图片描述
文中给出了两套分解策略,作为对比,其中一套可以作为Baseline(不含噪声项),另外一套就是文中所提的创新方法:

1、Baseline

Retinex分解模型如下所示:
a r g m i n R , L ∥ R ∘ L − I ∥ F 2 + β ∥ ▽ L ∥ 1 + ω ∥ ▽ R − G ∥ F 2 \underset{\mathbf{R},\mathbf{L}}{argmin}\left \| \mathbf{R}\circ \mathbf{L}-\mathbf{I} \right \|_{F}^{2}+\beta \left \| \triangledown \mathbf{L} \right \|_{1}+\omega \left \| \triangledown \mathbf{R}-\mathbf{G} \right \|_{F}^{2} R,LargminRLIF2+βL1+ωRGF2式中, β \beta β ω \omega ω表示每一项系数, ∥ ⋅ ∥ F \left \| \cdot \right \|_{F} F ∥ ⋅ ∥ 1 \left \| \cdot \right \|_{1} 1分别表示F-norm和1-norm, ▽ \bigtriangledown 表示一阶微分算子, ∘ \circ 表示点乘操作, G \mathbf{G} G表示原始图像 I \mathbf{I} I的调整梯度,以上各项分别代表:

  • ∥ R ∘ L − I ∥ F 2 \left \| \mathbf{R}\circ \mathbf{L}-\mathbf{I} \right \|_{F}^{2} RLIF2:原始图像 I \mathbf{I} I和重构图像 R ∘ L \mathbf{R}\circ \mathbf{L} RL之间的保真度
  • ∥ ▽ L ∥ 1 \left \| \triangledown \mathbf{L} \right \|_{1} L1:总体稀疏度,和 L \mathbf{L} L区域平滑度
  • ∥ ▽ R − G ∥ F 2 \left \| \triangledown\mathbf{R}-\mathbf{G} \right \|_{F}^{2} RGF2:反射估计图 R \mathbf{R} R G \mathbf{G} G的距离,增强反射图的结构信息

文章提到两个可解释性问题:
(1)、针对照明估计图 L \mathbf{L} L平滑度约束问题,在以往的工作中一般是使用L2-norm,在ML和DL中,L2-norm常常用在Loss函数中,防止模型过拟合提高模型的泛化能力,和L1-norm不同的是,L2-norm是对矩阵向量各元素平方和求平方根,所以其对矩阵中突变值更敏感,对应弱光图像中照度(光照)突变的区域,L2范数强制空间平滑照明会产生区域模糊现象,也叫边缘伪影现象,因此文中使用L1-norm范数来约束照明梯度,保持照明图像的整体结构,以取得更好的视觉效果。

(2)、反射图的梯度约束问题,考虑到低对比度通常表示较低的梯度范围,所以模型第三项通过调整反射率梯度来提高整体对比度,梯度矩阵 G \mathbf{G} G是通过自适应调整因子和原始图像的梯度乘积得到的,公式如下:
{ G = K ∘ ▽ I K = 1 + λ e − ∣ ▽ I ∣ / σ \left\{\begin{matrix} \mathbf{G}=\mathbf{K}\circ \triangledown \mathbf{I} & \\ \mathbf{K}=1+\lambda e^{-\left | \triangledown \mathbf{I} \right |/\sigma }& \end{matrix}\right. {G=KIK=1+λeI/σ式中, λ \lambda λ σ \sigma σ分别控制放大程度和放大率,自适应调节因子 K \mathbf{K} K与梯度 ▽ I \triangledown \mathbf{I} I成反比,使得调整梯度 G \mathbf{G} G具有较为均匀的梯度变化,文章展示该项在整体增强效果中的作用,如图:
在这里插入图片描述
从肉眼来看,整体对比度信息差别不大,但是’白色方块’处局部对比度结构的确展示的要更加完整。

2、Robust Retinex噪声优化模型分析

考虑到自然弱光图像噪声不仅仅是加性(或乘性)高斯白噪声,通过某种分布很难评估噪声水平,因此文章从输入图像 S \mathbf{S} S(HSV空间)直接估计一个噪声图,故通过Robust Retinex得到增强噪声优化模型如下所示: a r g m i n R , L , N ∥ R ∘ L + N − I ∥ F 2 + β ∥ ▽ L ∥ 1 + ω ∥ ▽ R − G ∥ F 2 + δ ∥ N ∥ F 2 \underset{\mathbf{R},\mathbf{L},\mathbf{N}}{argmin}\left \| \mathbf{R}\circ \mathbf{L}+\mathbf{N}-\mathbf{I} \right \|_{F}^{2}+\beta \left \| \triangledown \mathbf{L} \right \|_{1}+\omega \left \| \triangledown \mathbf{R}-\mathbf{G} \right \|_{F}^{2}+\delta \left \|\mathbf{N} \right \|_{F}^{2} R,L,NargminRL+NIF2+βL1+ωRGF2+δNF2式中, N \mathbf{N} N表示噪声图,其他项如前所述, ∥ N ∥ F 2 \left \|\mathbf{N} \right \|_{F}^{2} NF2项限制整体噪声,另外修改梯度矩阵 G \mathbf{G} G,如下:
{ G = K ∘ ▽ I ^ K = 1 + λ e − ∣ ▽ I ^ ∣ / σ \left\{\begin{matrix} \mathbf{G}=\mathbf{K}\circ \triangledown \mathbf{\widehat{I}} & \\ \mathbf{K}=1+\lambda e^{-\left | \triangledown \mathbf{\widehat{I}} \right |/\sigma }& \end{matrix}\right. {G=KI K=1+λeI /σ其中, ▽ I ^ \triangledown\mathbf{\widehat{I}} I 是一个绝对值函数,
▽ I ^ = { 0 , i f ∣ I ^ ∣ < ε I ^ , o t h e r w i s e \triangledown \mathbf{\widehat{I}} =\left\{\begin{matrix} 0, &if\left | \mathbf{\widehat{I}} \right | <\varepsilon \\ \mathbf{\widehat{I}}, & otherwise \end{matrix}\right. I ={0,I ,ifI <εotherwise这样,小梯度(噪声水平)在放大前就被抑制了,避免后续增强过程中对极低照度下密集噪声的方法效果。

3、噪声优化模型求解

文章表示对于非凸优化问题,ADM是一个很好的工具,在此基础上,作者提出一个基于Lagrange乘子的ADM优化算法来求解该模型,总共分为五个步骤如下:
Step 1:用辅助变量 T \mathbf{T} T替换 ▽ L \bigtriangledown \mathbf{L} L,重写等式为:
a r g m i n R , L , N , T ∥ R ∘ L + N − I ∥ F 2 + β ∥ T ∥ 1 + δ ∥ N ∥ F 2 + ω ∥ ▽ R − G ∥ F 2 \underset{\mathbf{R},\mathbf{L},\mathbf{N},\mathbf{T}}{argmin}\left \| \mathbf{R}\circ \mathbf{L}+\mathbf{N}-\mathbf{I} \right \|_{F}^{2}+\beta \left \| \mathbf{T} \right \|_{1}+\delta \left \| \mathbf{N} \right \|_{F}^{2}+\omega \left \| \bigtriangledown \mathbf{R}-\mathbf{G} \right \|_{F}^{2} R,L,N,TargminRL+NIF2+βT1+δNF2+ωRGF2 s . t . T = ▽ L s.t. \mathbf{T}=\bigtriangledown \mathbf{L} s.t.T=LStep 2:引入拉格朗日乘子 Z \mathbf{Z} Z来移除等式约束,得到增广拉格朗日方程:
l ( R , L , N , T , Z ) = ∥ R ∘ L + N − I ∥ F 2 + β ∥ T ∥ 1 + ω ∥ ▽ R − G ∥ F 2 + δ ∥ N ∥ F 2 + Φ ( Z , ▽ L − T ) l(\mathbf{R},\mathbf{L},\mathbf{N},\mathbf{T},\mathbf{Z})=\left \| \mathbf{R}\circ \mathbf{L}+\mathbf{N}-\mathbf{I} \right \|_{F}^{2}+\beta \left \| \mathbf{T} \right \|_{1}+\omega \left \|\bigtriangledown \mathbf{R}-\mathbf{G} \right \|_{F}^{2}+\delta \left \| \mathbf{N} \right \|_{F}^{2}+\Phi (\mathbf{Z},\bigtriangledown \mathbf{L}-\mathbf{T}) l(R,L,N,T,Z)=RL+NIF2+βT1+ωRGF2+δNF2+Φ(Z,LT)其中: Φ ( Z , ▽ L − T ) = ⟨ Z , ▽ L − T ⟩ + ( μ / 2 ) ∥ ▽ L − T ∥ F 2 \Phi (\mathbf{Z},\bigtriangledown\mathbf{L}-\mathbf{T})=\left \langle \mathbf{Z},\bigtriangledown\mathbf{L}-\mathbf{T} \right \rangle+(\mu /2)\left \| \bigtriangledown \mathbf{L}-\mathbf{T} \right \|_{F}^{2} Φ(Z,LT)=Z,LT+(μ/2)LTF2 ⟨ ⋅ , ⋅ ⟩ \left \langle \cdot ,\cdot \right \rangle ,表示矩阵内积, μ \mu μ表示正系数。优化方程可以通过依次迭代更新每个变量来求解,同时将上一次迭代估计的其他变量作为常量
Step 3:第k次迭代各变量求解

  • R \mathbf{R} R求解:忽略与 R \mathbf{R} R无关的变量,得到优化方程: a r g m i n R ∥ R ∘ L ( k ) + N ( k ) − I ∥ F 2 + ω ∥ ▽ R − G ∥ F 2 \underset{\mathbf{R}}{argmin}\left \| \mathbf{R}\circ \mathbf{L^{(k)}}+\mathbf{N^{(k)}}-\mathbf{I} \right \|_{F}^{2}+\omega \left \| \bigtriangledown \mathbf{R}-\mathbf{G} \right \|_{F}^{2} RargminRL(k)+N(k)IF2+ωRGF2将第一项向量化,可得到一个最小二乘问题方程:
    a r g m i n R ∥ r I ~ ( k ) + n ( k ) − i ∥ F 2 + ω ∥ ▽ R − G ∥ F 2 \underset{\mathbf{R}}{argmin}\left \| \mathbf{r} \mathbf{\widetilde{I}^{(k)}}+\mathbf{n^{(k)}}-\mathbf{i} \right \|_{F}^{2}+\omega \left \| \bigtriangledown \mathbf{R}-\mathbf{G} \right \|_{F}^{2} RargminrI (k)+n(k)iF2+ωRGF2式中, I \mathbf{I} I是矩阵 L \mathbf{L} L的向量化结果, I ~ \mathbf{\widetilde{I}} I I \mathbf{I} I的对角矩阵,在下面有同样的向量化处理( r \mathbf{r} r i \mathbf{i} i n \mathbf{n} n t \mathbf{t} t g \mathbf{g} g z \mathbf{z} z分别对应于 R \mathbf{R} R I \mathbf{I} I N \mathbf{N} N T \mathbf{T} T G \mathbf{G} G Z \mathbf{Z} Z的向量化结果。)
    然后,对 R \mathbf{R} R微分,并令微分方程为0,可得等式:
    2 ( I ~ ( k ) ) T ( I ~ ( k ) r + n ( k ) − i ) + 2 ω D T ( D r − g ) = 0 2(\mathbf{\widetilde{I}}^{(k)})^{\textup{T}}(\mathbf{\widetilde{I}}^{(k)}\mathbf{r}+\mathbf{n}^{(k)}-\mathbf{i})+2\omega \mathbf{D}^{\textup{T}}(\mathbf{Dr}-\mathbf{g})=\mathbf{0} 2(I (k))T(I (k)r+n(k)i)+2ωDT(Drg)=0移项合并同类项可得:
    ( f ( I ~ ( k ) ) + ω f ( D ) ) r = I ~ ( k ) ( i − n ( k ) ) + ω D T g (f(\mathbf{\widetilde{I}}^{(k)})+\omega f(\mathbf{D}))\mathbf{r}=\mathbf{\widetilde{I}}^{(k)}(\mathbf{i}-\mathbf{n}^{(k)})+\omega \mathbf{D}^{\textup{T}}\mathbf{g} (f(I (k))+ωf(D))r=I (k)(in(k))+ωDTg式中, D \mathbf{D} D代表离散梯度算子, f ( x ) = x T x f(\mathbf{x})=\mathbf{x}^{\textup{T}}\mathbf{x} f(x)=xTx
    因此,可得到反射估计 r \mathbf{r} r的第k+i次迭代结果:
    r ( k + 1 ) = ( f ( I ~ ( k ) ) + ω f ( D ) ) − 1 ( I ~ ( k ) ( i − n ( k ) ) + ω D T g ) \mathbf{r}^{(k+1)}=(f(\mathbf{\widetilde{I}}^{(k)})+\omega f(\mathbf{D}))^{-1}(\mathbf{\widetilde{I}}^{(k)}(\mathbf{i}-\mathbf{n}^{(k)})+\omega \mathbf{D}^{\textup{T}}\mathbf{g}) r(k+1)=(f(I (k))+ωf(D))1(I (k)(in(k))+ωDTg)这里需要注意的是F-norm的求导计算,通过查阅相关资料,得F-norm的求导公式为: ▽ x ∥ X ∥ F 2 = 2 X \triangledown _{\mathbf{x}}\left \| \mathbf{X} \right \|_{F}^{2}=2\mathbf{X} xXF2=2X,其仿射变换的求导公式为:若 Y = A X + B Y=AX+B Y=AX+B(设A,B均为常量矩阵),则: ▽ x f ( A X + B ) = A T ▽ Y f ( Y ) \triangledown _{\mathbf{x}}f(A\mathbf{X}+B)=A^{\textup{T}}\triangledown _{\mathbf{Y}}f(Y) xf(AX+B)=ATYf(Y)。当然这只是一个简洁的记忆方法,对于一个搞图像的研究生就没必要推导了。
  • L \mathbf{L} L求解:忽略与 L \mathbf{L} L无关的变量,得到优化方程:
    a r g m i n L ∥ R ( k + 1 ) ∘ L + N ( k ) − I ∥ F 2 + Φ ( Z ( k ) , ▽ L − T ( k ) ) \underset{\mathbf{L}}{argmin}\left \| \mathbf{R}^{(k+1)}\circ \mathbf{L}+\mathbf{N}^{(k)}-\mathbf{I} \right \|_{F}^{2}+\Phi (\mathbf{Z}^{(k)},\bigtriangledown \mathbf{L}-\mathbf{T}^{(k)}) LargminR(k+1)L+N(k)IF2+Φ(Z(k),LT(k))即: a r g m i n L ∥ R ( k + 1 ) ∘ L + N ( k ) − I ∥ F 2 + ⟨ Z ( k ) , ▽ L − T ( k ) ⟩ + ( μ / 2 ) ∥ ▽ L − T ( k ) ∥ F 2 \underset{\mathbf{L}}{argmin}\left \| \mathbf{R}^{(k+1)}\circ \mathbf{L}+\mathbf{N}^{(k)}-\mathbf{I} \right \|_{F}^{2}+\left \langle \mathbf{Z}^{(k)},\bigtriangledown\mathbf{L}-\mathbf{T}^{(k)} \right \rangle+(\mu /2)\left \| \bigtriangledown \mathbf{L}-\mathbf{T}^{(k)} \right \|_{F}^{2} LargminR(k+1)L+N(k)IF2+Z(k),LT(k)+(μ/2)LT(k)F2
    将其向量化,可得到一个最小二乘问题方程: a r g m i n L ∥ r ~ ( k + 1 ) ∘ I + n ( k ) − i ∥ F 2 + ⟨ z ( k ) , ▽ L − t ( k ) ⟩ + ( μ / 2 ) ∥ ▽ L − t ( k ) ∥ F 2 \underset{\mathbf{L}}{argmin}\left \| \mathbf{\widetilde{r}}^{(k+1)}\circ \mathbf{I}+\mathbf{n}^{(k)}-\mathbf{i} \right \|_{F}^{2}+\left \langle \mathbf{z}^{(k)},\bigtriangledown\mathbf{L}-\mathbf{t}^{(k)} \right \rangle+(\mu /2)\left \| \bigtriangledown \mathbf{L}-\mathbf{t}^{(k)} \right \|_{F}^{2} Largminr (k+1)I+n(k)iF2+z(k),Lt(k)+(μ/2)Lt(k)F2
    然后,对 L \mathbf{L} L微分,并令微分方程为0,可得等式: 2 ( r ~ ( k + 1 ) ) T ( r ~ ( k + 1 ) I + n ( k ) − i ) + D T Z ( k ) + μ D T ( D I − t ( k ) ) = 0 2(\mathbf{\widetilde{r}}^{(k+1)})^{\textup{T}}(\mathbf{\widetilde{r}}^{(k+1)}\mathbf{I}+\mathbf{n}^{(k)}-\mathbf{i})+\mathbf{D}^{T}\mathbf{Z}^{(k)}+\mu \mathbf{D}^{T}(\mathbf{D{I}}-\mathbf{t}^{(k)})=\mathbf{0} 2(r (k+1))T(r (k+1)I+n(k)i)+DTZ(k)+μDT(DIt(k))=0移项合并同类项可得: ( 2 f ( r ~ ( k + 1 ) ) + μ f ( D ) ) I = 2 r ~ ( k + 1 ) ( i − n ( k ) ) + μ D T ( t ( k ) − z ( k ) μ ) (2f(\mathbf{\widetilde{r}}^{(k+1)})+\mu f(\mathbf{D}))\mathbf{I}=2\mathbf{\widetilde{r}}^{(k+1)}(\mathbf{i}-\mathbf{n}^{(k)})+\mu \mathbf{D}^{\textup{T}}(\mathbf{t}^{(k)}-\frac{\mathbf{z}^{(k)}}{\mu }) (2f(r (k+1))+μf(D))I=2r (k+1)(in(k))+μDT(t(k)μz(k))式中, D \mathbf{D} D f ( X ) f(\mathbf{X}) f(X)和上式一样,注意内积形式 ⟨ ⋅ , ⋅ ⟩ \left \langle \cdot ,\cdot \right \rangle ,的导数推导,因此可得到照明估计 I \mathbf{I} I的第k+1次迭代结果: I ( k + 1 ) = ( 2 f ( r ~ ( k + 1 ) ) + μ f ( D ) ) − 1 ( 2 r ~ ( k + 1 ) ( i − n ( k ) ) + μ D T ( t ( k ) − z ( k ) μ ) ) \mathbf{I}^{(k+1)}=(2f(\mathbf{\widetilde{r}}^{(k+1)})+\mu f(\mathbf{D}))^{-1}(2\mathbf{\widetilde{r}}^{(k+1)}(\mathbf{i}-\mathbf{n}^{(k)})+\mu \mathbf{D}^{\textup{T}}(\mathbf{t}^{(k)}-\frac{\mathbf{z}^{(k)}}{\mu })) I(k+1)=(2f(r (k+1))+μf(D))1(2r (k+1)(in(k))+μDT(t(k)μz(k)))原文中, n ( k ) \mathbf{n}^{(k)} n(k)写成了 n ( k + 1 ) \mathbf{n}^{(k+1)} n(k+1)应该是笔误。
  • N \mathbf{N} N求解:忽略与 N \mathbf{N} N无关的变量,得到优化方程:
    a r g m i n N ∥ R ( k + 1 ) ∘ L ( k + 1 ) + N − I ∥ F 2 + δ ∥ N ∥ F 2 \underset{\mathbf{N}}{argmin}\left \| \mathbf{R}^{(k+1)}\circ \mathbf{L}^{(k+1)}+\mathbf{N}-\mathbf{I} \right \|_{F}^{2}+\delta \left \| \mathbf{N} \right \|_{F}^{2} NargminR(k+1)L(k+1)+NIF2+δNF2由于 N \mathbf{N} N R \mathbf{R} R L \mathbf{L} L无乘积关系,因此可直接求出该二次问题的解析解: N ( k + 1 ) = ( I − R ( k + 1 ) ∘ L ( k + 1 ) ) / ( 1 + δ ) \mathbf{N}^{(k+1)}=(\mathbf{I}-\mathbf{R}^{(k+1)}\circ \mathbf{L}^{(k+1)})/(1+\delta ) N(k+1)=(IR(k+1)L(k+1))/(1+δ)文中这里是没有转换成最小二乘问题的,我也没看懂,WoC,为什么要加个’也’呢~
  • T \mathbf{T} T求解:忽略与 T \mathbf{T} T无关的变量,得到优化方程:
    a r g m i n T β ∥ T ∥ 1 + Φ ( Z ( k ) , ▽ L ( k + 1 ) − T ) \underset{\mathbf{T}}{argmin} \beta \left \| \mathbf{T} \right \|_{1}+\Phi (\mathbf{Z}^{(k)},\bigtriangledown \mathbf{L}^{(k+1)}-\mathbf{T}) TargminβT1+Φ(Z(k),L(k+1)T)文章介绍可通过Shrinkage操作直接得到,辅助变量 T \mathbf{T} T的第k+1次迭代结果:
    T ( k + 1 ) = S β μ ( k ) ( ▽ L ( k + 1 ) + Z ( k ) μ ( k ) ) \mathbf{T}^{(k+1)}=\mathbf{S}_{\frac{\beta }{\mu ^{(k)}}}(\triangledown \mathbf{L}^{(k+1)}+\frac{\mathbf{Z}^{(k)}}{\mu ^{(k)}}) T(k+1)=Sμ(k)β(L(k+1)+μ(k)Z(k))式中, S ε ( x ) = s i g n ( x ) m a x ( ∣ x ∣ − ε , 0 ) \mathbf{S}_{\varepsilon }(\mathbf{x})=sign(\mathbf{x})max(\left | \mathbf{x} \right |-\varepsilon,0) Sε(x)=sign(x)max(xε,0)
  • Lagrange乘子 Z \mathbf{Z} Z和系数因子 μ \mu μ的更新:
    { Z ( k + 1 ) = Z ( k ) + μ ( k ) ( ▽ L ( k + 1 ) − T ( k + 1 ) ) μ ( k + 1 ) = μ ( k ) ρ , ρ > 1 \left\{\begin{matrix} \mathbf{Z}^{(k+1)}=\mathbf{Z}^{(k)}+\mu ^{(k)}(\triangledown \mathbf{L}^{(k+1)}-\mathbf{T}^{(k+1)})\\ \mu ^{(k+1)}=\mu ^{(k)}\rho ,\rho>1 \end{matrix}\right. {Z(k+1)=Z(k)+μ(k)(L(k+1)T(k+1))μ(k+1)=μ(k)ρ,ρ>1以上就是文中介绍的基于Lagrange乘子的ADM第k次序列迭代过程,当达到条件:
    (1)反射估计 R ( k ) \mathbf{R}^{(k)} R(k) R ( k + 1 ) \mathbf{R}^{(k+1)} R(k+1)(或者照明估计 L ( k ) \mathbf{L}^{(k)} L(k) L ( k + 1 ) ) \mathbf{L}^{(k+1)}) L(k+1))变化量达到某一最低阈值时,
    (2)迭代达到某一指定次数时,
    以上条件(1)或(2)达到时,即停止更新,得到反射估计图 R \mathbf{R} R、照明估计图 L \mathbf{L} L和噪声图 N \mathbf{N} N,整个算法的执行流程如下:
    在这里插入图片描述

Step 4:照明分量调整以提高整体照度
文中通过Gamma矫正调整 L \mathbf{L} L,公式如下:
L ^ = L 1 γ \mathbf{\widehat{L}}=\mathbf{L}^{\frac{1}{\gamma }} L =Lγ1根据经验, γ \gamma γ值设置为2.2。
Step 5:得到HSV空间V通道的去噪增强图像并转化到RGB空间,公式如下:
I ^ = R ∘ L ^ \mathbf{\widehat{I}}=\mathbf{R}\circ \mathbf{\widehat{L}} I =RL S ^ ← I ^ \mathbf{\widehat{S}}\leftarrow \mathbf{\widehat{I}} S I 即可得到最终联合去噪与增强效果图像 S ^ \mathbf{\widehat{S}} S

三、实验效果及源码

待续…

源码;https://github.com/martinli0822/Low-light-image-enhancement

  • 8
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值