“玲珑杯”线上赛 Round #15 A Reverse the lights(dp)

DESCRIPTION

nn个灯,初始时都是不亮的状态,每次你可以选择一个某一个灯,不妨记为xx,所有满足和xx距离不超过kk的灯的状态都将被翻转,选择第ii个灯的代价记为cici,问最终所有灯都是亮的状态的最小花费.

INPUT
输入有两行,第一行包含两个正整数 n(1n10000)k(0k1000)n(1≤n≤10000)和k(0≤k≤1000)第二行包含 nn个整数,分别表示 ci(0ci109)ci(0≤ci≤109)
OUTPUT
输出一行表示答案
SAMPLE INPUT
3 11 1 1
SAMPLE OUTPUT
1


思路:对于每一次的操作,显然其周围的2k个灯不会有状态翻转,否则这次就是无效的,于是转换为简单的动态规划问题.令dp(i)表示将前i+k个灯全部点亮的最小花费,直接转移即可.
时间复杂度:O(n)


代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

const int maxn=10010;
const long long INF = 1e13;
int n, k;
long long dp[maxn], c[maxn];


int main() {
    scanf("%d%d",&n,&k);
    for(int i = 1; i <= n; i++)
       scanf("%lld", &c[i]);

    for(int i = 0; i <= n; i++)
        dp[i] = INF;
    long long ans = INF;

    //1...k,k+1,打开里面任意一盏灯,其左侧灯会全亮 
	for(int i = 1; i <= 1 + k; i++){
        if(i > n) break;//超过n即停止 
        dp[i] = c[i];
        if(i + k >= n) ans = min(ans, dp[i]);
    }

    for(int i = 2 * k + 2; i <= n; i++){
        dp[i] = dp[i - k - k - 1] + c[i];
        if(i + k >= n) 
            ans = min(ans, dp[i]);
    }

    printf("%lld\n",ans);
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值