DESCRIPTION
有nn个灯,初始时都是不亮的状态,每次你可以选择一个某一个灯,不妨记为xx,所有满足和xx距离不超过kk的灯的状态都将被翻转,选择第ii个灯的代价记为cici,问最终所有灯都是亮的状态的最小花费.
INPUT
输入有两行,第一行包含两个正整数
n(1≤n≤10000)和k(0≤k≤1000)n(1≤n≤10000)和k(0≤k≤1000)第二行包含
nn个整数,分别表示
ci(0≤ci≤109)ci(0≤ci≤109)
OUTPUT
输出一行表示答案
SAMPLE INPUT
3 11 1 1
SAMPLE OUTPUT
1
思路:对于每一次的操作,显然其周围的2k个灯不会有状态翻转,否则这次就是无效的,于是转换为简单的动态规划问题.令dp(i)表示将前i+k个灯全部点亮的最小花费,直接转移即可.
时间复杂度:O(n)
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int maxn=10010;
const long long INF = 1e13;
int n, k;
long long dp[maxn], c[maxn];
int main() {
scanf("%d%d",&n,&k);
for(int i = 1; i <= n; i++)
scanf("%lld", &c[i]);
for(int i = 0; i <= n; i++)
dp[i] = INF;
long long ans = INF;
//1...k,k+1,打开里面任意一盏灯,其左侧灯会全亮
for(int i = 1; i <= 1 + k; i++){
if(i > n) break;//超过n即停止
dp[i] = c[i];
if(i + k >= n) ans = min(ans, dp[i]);
}
for(int i = 2 * k + 2; i <= n; i++){
dp[i] = dp[i - k - k - 1] + c[i];
if(i + k >= n)
ans = min(ans, dp[i]);
}
printf("%lld\n",ans);
return 0;
}