最长上升子序列(dp)

求一个长度为n的最长上升子序列的长度(LIS),即对于任意的i<j都满足a[i]<a[j]的子序列;


思路:通过dp求解,我们首先定义:dp[i]=以a[i]为末尾的最长上升子序列的长度;

则以a[i]结尾的上升子序列是:

1)只包含a[i]的子序列

2)在满足j<i并且a[j]<a[i]的以以a[j]为结尾的上升子列末尾,追加上a[i]后得到的子序列

这二者之一,即状态转移方程是:dp[i]=max{dp[i],dp[j]+1|j<i且a[j]<a[i]}


时间复杂度:O(n^2)


代码:

//输入
int n;
int a[max_n];

int dp[max_n];//dp数组

void solve(){
      int res=0;
      for(int i=0;i<n;i++)
      {
              dp[i]=1;
              for(int j=0;j<i;j++)
                     if(a[j]<a[i])
                            dp[i]=max(dp[i],dp[j]+1);
               res=max(res,dp[i]);//更新
       }
       printf("%d\n",res);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值