概念:这就是在最大流问题的网络中,给边新加上了费用,而求的不再是流量的最大值,而是流量为F时费用的最小值,这类问题叫做最小费用流。
思路:在残余网络上总是沿最短路增广,此时,残余网络中的反向边的费用应该是原边费用的相反数,以保证过程是可逆而正确的,因为有负权边,所以就不能用Dijkstra算法求最短路了,而需要用Bellman-Ford算法。
时间复杂度:最坏复杂度为O(F*V*E)
代码:
//用于表示边的结构体(终点,容量,费用,反向边)
struct edge
{
int to,cap,cost,rev;
};
int V;//顶点数
vector<edge> G[max_v];//图的邻接表表示
int dist[max_v];//最短距离
int prevv[max_v],preve[max_v]//最短路中的前驱结点和对应的边
//向图中增加一条从fron到to容量为cap费用为cost的边
void add_edge(int from,int to,int cap,int cost)
{
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}
//求解从s到t流量为f的最小费用流
//如果不能再增广则返回-1
int min_cost_flow(int s,int t,int f)
{
int res=0;
while(f>0)
{
//利用Bellman-Ford算法求s到t的最短路
fill(dist,dist+V,INF);
dist[s]=0;
bool update=true;
while(update)
{
update=false;
for(int v=0;v<V;v++)
{
if(dist[v]==INF)
continue;
for(int i=0;i<G[v].size();i++)
{
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost)
{
dist[e.to]=dist[v]+e.cost;
prevv[e.to]=v;
preve[e.to]=i;
update=true;
}
}
}
}
if(dist[t]==INF)
{
//不能再增广
return -1;
}
//沿s到t的最短路尽量增广
int d=f;
for(int v=t;v!=s;v=prevv[v])
{
d=min(d,G[prevv[v]][preve[v]].cap);
}
f-=d;
res+=d*dist[t];
for(int v=t;v!=s;v=prevv[v])
{
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
g[e.to][e.rev].cap+=d;
}
}
return res;
}