最小费用流

概念:这就是在最大流问题的网络中,给边新加上了费用,而求的不再是流量的最大值,而是流量为F时费用的最小值,这类问题叫做最小费用流。

思路:在残余网络上总是沿最短路增广,此时,残余网络中的反向边的费用应该是原边费用的相反数,以保证过程是可逆而正确的,因为有负权边,所以就不能用Dijkstra算法求最短路了,而需要用Bellman-Ford算法。

时间复杂度:最坏复杂度为O(F*V*E)


代码:

//用于表示边的结构体(终点,容量,费用,反向边) 
struct edge
{
	int to,cap,cost,rev;
};

int V;//顶点数 
vector<edge> G[max_v];//图的邻接表表示 
int dist[max_v];//最短距离 
int prevv[max_v],preve[max_v]//最短路中的前驱结点和对应的边 

//向图中增加一条从fron到to容量为cap费用为cost的边 
void add_edge(int from,int to,int cap,int cost)
{
	G[from].push_back((edge){to,cap,cost,G[to].size()});
	G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}

//求解从s到t流量为f的最小费用流 
//如果不能再增广则返回-1 
int min_cost_flow(int s,int t,int f)
{
	int res=0;
	while(f>0)
	{
		//利用Bellman-Ford算法求s到t的最短路 
		fill(dist,dist+V,INF);
		dist[s]=0;
		bool update=true;
		while(update)
		{
			update=false;
			for(int v=0;v<V;v++)
			{
				if(dist[v]==INF)
				    continue;
				for(int i=0;i<G[v].size();i++)
				{
					edge &e=G[v][i];
					if(e.cap>0&&dist[e.to]>dist[v]+e.cost)
					{
						dist[e.to]=dist[v]+e.cost;
						prevv[e.to]=v;
						preve[e.to]=i;
						update=true;
					}
				}
			}
		}
		if(dist[t]==INF)
		{
			//不能再增广 
			return -1;
		}
		
		//沿s到t的最短路尽量增广 
		int d=f;
		for(int v=t;v!=s;v=prevv[v])
		{
			d=min(d,G[prevv[v]][preve[v]].cap);
		}
		f-=d;
		res+=d*dist[t];
		for(int v=t;v!=s;v=prevv[v])
		{
			edge &e=G[prevv[v]][preve[v]];
			e.cap-=d;
			g[e.to][e.rev].cap+=d;
		}
	}
	return res;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值