二分图最优匹配之KM算法

概念:完全二分图G(X∪Y,X×Y)的最大权和匹配;

ps:若集合X和集合Y不是完全二分图或集合X和集合Y的顶点个数不相等,可构造0权值的边或产生0权值的顶点;

Kuhn-Munkres算法流程:

(1)初始化可行顶标的值;

(2)用匈牙利算法寻找完备匹配;

(3)若未找到完备匹配则修改可行顶标的值;

(4)重复(2)(3)直到找到相等子图的完备匹配为止。

时间复杂度:朴素实现O(n^4),不过通过加入松弛量可以做到O(n^3)

代码:(O(n^3))

const int N = 20, inf = 2147483647;
int w[N][N], match[N], visx[N], visy[N], lack;
int lx[N] = {0}, ly[N] = {0}; //顶标
bool dfs(int x) 
{
    visx[x] = true;
    for (int y = 0; y < N; ++y) 
	{
        if (visy[y]) continue;
        int t = lx[x] + ly[y] - w[x][y];
        if (t==0) 
		{
            visy[y] = true;
            if (match[y]==-1 || dfs(match[y])) 
			{
                linky[y] = x;
                return true;
            }
        } 
		else 
		    lack = min(lack, t);
 
    }
    return false;
}
int km() 
{
    memset(match, -1, sizeof(match));
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
            lx[i] = max(lx[i], w[i][j]); //初始化顶标
    for (int x = 0; x < N; ++x)
    {
        for (; ;) 
		{
            memset(visx, 0, sizeof(visx));
            memset(visy, 0, sizeof(visy));
            lack = inf;
            if (dfs(x)) break;
            for (int i = 0; i < N; ++i) 
			{
                if (visx[i]) lx[i] -= lack;
                if (visy[i]) ly[i] += lack;
            }
        }
    }
    int res = 0;
    for (int j = 0; j < N; ++j)
        if(match[j]>-1)
            res += w[match[j]][j];
    return res;
}





  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值