当推荐系统遇上多模态Embedding

知乎微信视频号推荐算法大赛中,引入了结合OCR、ASR、图像和文字的多模态内容理解特征向量,即512维的Feed Embedding。该技术用于理解用户在视频号内的历史行为,以提升推荐的精准性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 多模态 Embedding 的定义 多模态嵌入(Embedding)是指通过特定算法将来自不同模态的数据映射到同一特征空间中的过程[^1]。这种转换使得原本异构的各类数据能够在相同的维度上进行比较、计算相似度以及联合建模。 ### 实现方式 为了实现有效的多模态嵌入,通常采用以下几种策略: #### 统一表示学习 通过对不同类型的数据分别提取高层次语义特征,并最终将其投影至共享的空间内完成统一表达。此过程中常用的技术有卷积神经网络(CNNs)用于处理图像,循环神经网络(RNNs)/变压器(Transformer)结构针对序列化的文本信息等。 ```python import torch.nn as nn class MultiModalEncoder(nn.Module): def __init__(self, text_encoder, image_encoder): super(MultiModalEncoder, self).__init__() self.text_encoder = text_encoder # 文本编码器 self.image_encoder = image_encoder # 图像编码器 def forward(self, texts, images): text_features = self.text_encoder(texts) image_features = self.image_encoder(images) return text_features, image_features ``` #### 注意力机制与跨模态对齐 引入注意力模块帮助聚焦于重要的局部区域或片段;同时借助对比损失函数等方式确保两个及以上模态间存在强关联性的样本点尽可能靠近彼此,在低维流形中形成紧凑簇群分布。 ```python from transformers import CLIPModel, CLIPTokenizer, CLIPProcessor model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") text_inputs = tokenizer(["a photo of a cat"], padding=True, truncation=True, return_tensors="pt") image_input = processor(image=image, return_tensors="pt")["pixel_values"] outputs = model(**text_inputs, pixel_values=image_input) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution over classes print(probs) ``` ### 应用场景 多模态嵌入技术已经在众多领域展现出巨大潜力并得到实际应用: - **自动驾驶**:结合摄像头视频流与其他传感器信号提升环境感知精度; - **智能推荐系统**:综合考虑用户的浏览历史记录、评论内容及其社交行为等因素提供个性化服务建议; - **虚拟助手交互体验优化**:支持语音命令识别的同时理解伴随的手势动作意图,从而更好地响应用户需求[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值